About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 729393, 12 pages
http://dx.doi.org/10.1155/2013/729393
Research Article

Antioxidant and α-Amylase Inhibitory Property of Phyllanthus virgatus L.: An In Vitro and Molecular Interaction Study

1Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow 226026, India
2Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA

Received 14 April 2013; Accepted 28 May 2013

Academic Editor: Wilson João Cunico Filho

Copyright © 2013 Arshya Hashim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The present study on Phyllanthus virgatus, known traditionally for its remedial potential, for the first time provides descriptions of the antioxidant and inhibition of α-amylase enzyme activity first by in vitro analyses, followed by a confirmatory in silico study to create a stronger biochemical rationale. Our results illustrated that P. virgatus methanol extract exhibited strong antioxidant and oxidative DNA damage protective activity than other extracts, which was well correlated with its total phenolic content. In addition, P. virgatus methanol extract strongly inhibited the α-amylase activity (IC50 33.20 ± 0.556 μg/mL), in a noncompetitive manner, than acarbose (IC50 76.88 ± 0.277 μg/mL), which showed competitive inhibition. Moreover, this extract stimulated the glucose uptake activity in 3T3-L1 cells and also showed a good correlation between antioxidant and α-amylase activities. The molecular docking studies of the major bioactive compounds (9,12-octadecadienoic acid, asarone, 11-octadecenoic acid, and acrylic acid) revealed via GC-MS analysis from this extract mechanistically suggested that the inhibitory property may be due to the synergistic effect of these bioactive compounds. These results provide substantial basis for the future use of P. virgatus methanol extract and its bioactive compound in in vivo system for the treatment and management of diabetes as well as in the related condition of oxidative stress.