About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 729393, 12 pages
http://dx.doi.org/10.1155/2013/729393
Research Article

Antioxidant and α-Amylase Inhibitory Property of Phyllanthus virgatus L.: An In Vitro and Molecular Interaction Study

1Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow 226026, India
2Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA

Received 14 April 2013; Accepted 28 May 2013

Academic Editor: Wilson João Cunico Filho

Copyright © 2013 Arshya Hashim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Styskal, H. van Remmen, A. Richardson, and A. B. Salmon, “Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models?” Free Radical Biology and Medicine, vol. 52, no. 1, pp. 46–58, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Halliwell, “Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?” The Lancet, vol. 344, no. 8924, pp. 721–724, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Johansen, A. K. Harris, D. J. Rychly, and A. Ergul, “Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical pratice,” Cardiovascular Diabetology, vol. 4, article 5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. C. Gutteridge, “Biological origin of free radicals and mechanisms of antioxidant protection,” Chemico-Biological Interactions, vol. 91, no. 2-3, pp. 133–140, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. F. A. van de Laar, P. L. Lucassen, R. P. Akkermans, E. H. van de Lisdonk, G. E. Rutten, and C. van Weel, “Alpha-glucosidase inhibitors for type 2 diabetes mellitus (Cochrane Review),” The Cochrane Library, 2008.
  7. A. Y. Y. Cheng and I. G. Fantus, “Oral antihyperglycemic therapy for type 2 diabetes mellitus,” Canadian Medical Association Journal, vol. 172, no. 2, pp. 213–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. M. de Sales, P. M. de Souza, L. A. Simeoni, P. D. O. Magalhães, and D. Silveira, “α-amylase inhibitors: a review of raw material and isolated compounds from plant source,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 1, pp. 141–183, 2012. View at Scopus
  9. S. Kumar, V. Kumar, M. Rana, and D. Kumar, “Enzymes inhibitors from plants: an alternate approach to treat diabetes,” Pharmacognosy Communications, vol. 2, no. 2, pp. 18–33, 2012.
  10. E. Haslam, “Natural polyphenols (vegetable tannins) as drugs: possible modes of action,” Journal of Natural Products, vol. 59, no. 2, pp. 205–215, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-C. Yang, H.-K. Hsu, J.-H. Hwang, and S.-J. Hong, “Enhancement of glucose uptake in 3T3-L1 adipocytes by Toona sinensis leaf extract,” Kaohsiung Journal of Medical Sciences, vol. 19, no. 7, pp. 327–333, 2003. View at Scopus
  12. P. Marin, S. S. Rebuffe, U. Smith, and P. Bjorntorp, “Glucose uptake in human adipose tissue,” Metabolism, vol. 36, pp. 1154–1160, 1987.
  13. J. Calixto, A. R. S. Santos, V. Filbo, and R. A. Yunes, “Review of the plants of the genus phyllanthus: their chemistry, pharmacology, and therapeutic potential,” Medicinal Research Reviews, vol. 18, no. 4, pp. 225–258, 1998.
  14. A. Kumaran and R. Joel Karunakaran, “In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India,” LWT-Food Science and Technology, vol. 40, no. 2, pp. 344–352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Shabeer, R. S. Srivastava, and S. K. Singh, “Antidiabetic and antioxidant effect of various fractions of Phyllanthus simplex in alloxan diabetic rats,” Journal of Ethnopharmacology, vol. 124, no. 1, pp. 34–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. N. V. Rajeshkumar, K. L. Joy, G. Kuttan, R. S. Ramsewak, M. G. Nair, and R. Kuttan, “Antitumour and anticarcinogenic activity of Phyllanthus amarus extract,” Journal of Ethnopharmacology, vol. 81, no. 1, pp. 17–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. V. V. Asha, M. S. Sheeba, V. Suresh, and P. J. Wills, “Hepatoprotection of Phyllanthus maderaspatensis against experimentally induced liver injury in rats,” Fitoterapia, vol. 78, no. 2, pp. 134–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Prakash, K. S. Satyan, S. P. Wahi, and R. P. Singh, “Comparative hepatoprotective activity of three phyllanthus species, P. urinaria, P. niruri and P. simplex, on carbon tetrachloride induced liver injury in the rat,” Phytotherapy Research, vol. 9, no. 8, pp. 594–596, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. H. S. Chouhan and S. K. Singh, “Phytochemical analysis, antioxidant and anti-inflammatory activities of Phyllanthus simplex,” Journal of Ethnopharmacology, vol. 137, no. 3, pp. 1337–1344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Poompachee and N. Chudapongse, “Comparison of the antioxidant and cytotoxic activities of Phyllanthus virgatus and Phyllanthus amarus extracts,” Medical Principles and Practice, vol. 21, no. 1, pp. 24–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Regi Raphael, M. C. Sabu, and R. Kuttan, “Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum & Thonn on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential,” Indian Journal of Experimental Biology, vol. 40, no. 8, pp. 905–909, 2002. View at Scopus
  22. J. B. Harborne, Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, vol. 279, Chapman & Hall, London, UK, 1973.
  23. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Brand-Williams, M. E. Cuvelier, and C. Benset, “Use of free radical method to evaluate antioxidant activity,” Lebensmittel-Wissenschaft Und -Technologie, vol. 28, pp. 25–30, 1995.
  25. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Badami, M. K. Gupta, and B. Suresh, “Antioxidant activity of the ethanolic extract of Striga orobanchioides,” Journal of Ethnopharmacology, vol. 85, no. 2-3, pp. 227–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J.-C. Lee, H.-R. Kim, J. Kim, and Y.-S. Jang, “Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten,” Journal of Agricultural and Food Chemistry, vol. 50, no. 22, pp. 6490–6496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Bernfeld, “Amylases α and β,” in Methods in Enzymology, S. P. Colowick and N. O. Kaplan, Eds., vol. 1, p. 149, Academic Press, New York, NY, USA, 1955.
  29. M. A. Mogale, H. M. Mkhombo, S. L. Lebelo, L. J. Shai, M. A. Chauke, and A. Freitas, “The effects of Clausena anisata (Wild) Hook leaf extracts on selected diabetic related metabolizing enzymes,” Journal of Medicinal Plants Research, vol. 6, no. 25, pp. 4200–4207, 2012.
  30. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Scopus
  31. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. Sate, S. Swaminathan, and M. Karplus, “CHARMM: a program for macromolecular energy minimization and dynamics calculations,” Journal of Computational Chemistry, vol. 4, pp. 187–217, 1983.
  32. G. M. Morris, D. S. Goodsell, R. S. Halliday et al., “Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function,” Journal of Computational Chemistry, vol. 19, no. 14, pp. 1639–1662, 1998. View at Scopus
  33. M. S. Khan, I. A. Ansari, S. Ahmed, F. Akhtar, A. Hashim, and A. K. Srivastava, “Chemotherapeutic potential of Boeerhaavi diffussa L: a review,” Journal of Applied Pharmaceutical Science, vol. 3, no. 01, pp. 133–139, 2013.
  34. J. Iqbal, M. S. Khan, and A. Khan, “Protection of oxidative stress induced LDL oxidation and erythrocyte damage from type 2 diabetic subjects by in vitro tocotrienol treatment,” Journal of Pharmacy Research, vol. 5, no. 01, pp. 30–37, 2012.
  35. C. L. Narasimhudu and R. R. V. Raju, “Preliminary phytochemical studies on leaves of phyllanthus species (euphorbiaceae), used by the local tribals of Andhra Pradesh,” International Journal of Pharmaceutical Studies and Research, vol. 2, no. 4, pp. 6–9, 2011.
  36. M. H. Gordon, “The mechanism of antioxidant action in vitro,” in Food Antioxidants, B. J. F. Hudson, Ed., pp. 1–18, Elsevier Applied Science, London, UK, 1990.
  37. J. Dai and R. J. Mumper, “Plant phenolics: extraction, analysis and their antioxidant and anticancer properties,” Molecules, vol. 15, no. 10, pp. 7313–7352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. B. N. Singh, B. R. Singh, R. L. Singh et al., “Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1109–1116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Zhang, T. Yasuda, Y. Yu et al., “Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation,” Free Radical Biology and Medicine, vol. 20, no. 1, pp. 145–150, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. A. K. Tiwari, “Wisdom of Ayurveda in perceiving diabetes: enigma of therapeutic recognition,” Current Science, vol. 88, no. 7, pp. 1043–1051, 2005. View at Scopus
  41. M. R. Bhandari, N. Jong-Anurakkun, G. Hong, and J. Kawabata, “α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.),” Food Chemistry, vol. 106, no. 1, pp. 247–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Jung, M. Park, H. C. Lee, Y.-H. Kan, E. S. Kang, and S. K. Kim, “Antidiabetic agents from medicinal plants,” Current Medicinal Chemistry, vol. 13, no. 10, pp. 1203–1218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Lo Piparo, H. Scheib, N. Frei, G. Williamson, M. Grigorov, and C. J. Chou, “Flavonoids for controlling starch digestion: structural requirements for inhibiting human α-amylase,” Journal of Medicinal Chemistry, vol. 51, no. 12, pp. 3555–3561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Eldar-Finkelman and E. G. Krebs, “Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9660–9664, 1997. View at Scopus
  45. J. R. Zierath and H. Wallberg-Henriksson, “From receptor to effector: Insulin signal transduction in skeletal muscle from type II diabetic patients,” Annals of the New York Academy of Sciences, vol. 967, pp. 120–134, 2002. View at Scopus
  46. P. L. Owen, L. C. Martineau, D. Caves, P. S. Haddad, T. Matainaho, and T. Johns, “Consumption of guava (Psidium guajava L) and noni (Morinda citrifolia L) may protect betel quid-chewing Papua New Guineans against diabetes,” Asia Pacific Journal of Clinical Nutrition, vol. 17, no. 4, pp. 635–643, 2008. View at Scopus
  47. A. P. Jorge, H. Horst, E. D. Sousa, M. G. Pizzolatti, and F. R. M. B. Silva, “Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle,” Chemico-Biological Interactions, vol. 149, no. 2-3, pp. 89–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Hasan, M. Danishuddin, M. Adil, K. Singh, P. K. Verma, and A. U. Khan, “Efficacy of E. officinalis on the cariogenic properties of streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism,” PLoS ONE, vol. 7, no. 7, pp. 1–12, 2012.
  49. S. H. Lee, K.-Y. Kim, S. Y. Ryu et al., “Asarone inhibits adipogenesis and stimulates lipolysis in 3T3-L1 adipocytes,” Cellular and Molecular Biology, vol. 56, no. 1, pp. OL1215–OL1222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Salman Khan, S. Akhtar, O. A. Al-Sagair, and J. M. Arif, “Protective effect of dietary tocotrienols against infection and inflammation-induced hyperlipidemia: an in vivo and in silico study,” Phytotherapy Research, vol. 25, no. 11, pp. 1586–1595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. W. Ryder, C. P. Portocarrero, X. M. Song et al., “Isomer-specific antidiabetic properties of conjugated linoleic acid: Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression,” Diabetes, vol. 50, no. 5, pp. 1149–1157, 2001. View at Scopus
  52. Š. Janeček, B. Svensson, and B. Henrissat, “Domain evolution in the α-amylase family,” Journal of Molecular Evolution, vol. 45, no. 3, pp. 322–331, 1997. View at Publisher · View at Google Scholar · View at Scopus