About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 732059, 14 pages
http://dx.doi.org/10.1155/2013/732059
Clinical Study

Coronary CT Angiography in Coronary Artery Disease: Correlation between Virtual Intravascular Endoscopic Appearances and Left Bifurcation Angulation and Coronary Plaques

Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

Received 18 April 2013; Revised 19 September 2013; Accepted 4 October 2013

Academic Editor: Monvadi Barbara Srichai

Copyright © 2013 Zhonghua Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. L. Raff, M. J. Gallagher, W. W. O'Neill, and J. A. Goldstein, “Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography,” Journal of the American College of Cardiology, vol. 46, no. 3, pp. 552–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. D. Schuijf, G. Pundziute, J. W. Jukema et al., “Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease,” American Journal of Cardiology, vol. 98, no. 2, pp. 145–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. F. J. Rybicki, H. J. Otero, M. L. Steigner et al., “Initial evaluation of coronary images from 320-detector row computed tomography,” International Journal of Cardiovascular Imaging, vol. 24, no. 5, pp. 535–546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. G. A. Rodriguez-Granillo, M. A. Rosales, E. Degrossi, I. Durbano, and A. E. Rodriguez, “Multislice CT coronary angiography for the detection of burden, morphology and distribution of atherosclerotic plaques in the left main bifurcation,” International Journal of Cardiovascular Imaging, vol. 23, no. 3, pp. 389–392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. R. Mollet, F. Cademartiri, C. A. G. van Mieghem et al., “High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography,” Circulation, vol. 112, no. 15, pp. 2318–2323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Cademartiri, N. R. Mollet, G. Runza et al., “Diagnostic accuracy of multislice computed tomography coronary angiography is improved at low heart rates,” International Journal of Cardiovascular Imaging, vol. 22, no. 1, pp. 101–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Schuijf, T. Beck, C. Burgstahler et al., “Differences in plaque composition and distribution in stable coronary artery disease versus acute coronary syndromes; non-invasive evaluation with multi-slice computed tomography,” Acute Cardiac Care, vol. 9, no. 1, pp. 48–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. C. Liu, Z. Sun, P. W. Tsay, et al., “Significance of coronary calcification for prediction of coronary artery disease and cardiac events based on 64-slice coronary computed tomography angiography,” Biomed Research International, vol. 2013, Article ID 472347, 9 pages, 2013. View at Publisher · View at Google Scholar
  9. Z. Sun and H. Zheng, “Effect of suprarenal stent struts on the renal artery with ostial calcification observed on CT virtual intravascular endoscopy,” European Journal of Vascular and Endovascular Surgery, vol. 28, no. 5, pp. 534–542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Sun, F. J. Dimpudus, J. Nugroho, and J. D. Adipranoto, “CT virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study,” European Journal of Radiology, vol. 75, no. 1, pp. e112–e119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Sun, “3D multislice CT angiography in post-aortic stent grafting: a pictorial essay,” Korean Journal of Radiology, vol. 7, no. 3, pp. 205–211, 2006. View at Scopus
  12. Z. Sun, Y. B. Allen, S. Nadkarni, R. Knight, D. E. Hartley, and M. M. D. Lawrence-Brown, “CT virtual intravascular endoscopy in the visualization of fenestrated stent-grafts,” Journal of Endovascular Therapy, vol. 15, no. 1, pp. 42–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Sun, B. P. Mwipatayi, Y. B. Allen, D. E. Hartley, and M. M. Lawrence-Brown, “Multislice CT angiography of fenestrated endovascular stent grafting for treating abdominal aortic aneurysms: a pictorial review of the 2D/3D visualizations,” Korean Journal of Radiology, vol. 10, no. 3, pp. 285–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Sun, S. A. Al Dosari, C. Ng, A. Al-Muntashari, and S. Almaliky, “Multislice CT virtual intravascular endoscopy for assessing pulmonary embolisms: a pictorial review,” Korean Journal of Radiology, vol. 11, no. 2, pp. 222–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Sun and Y. Cao, “Multislice CT angiography assessment of left coronary artery: correlation between bifurcation angle and dimensions and development of coronary artery disease,” European Journal of Radiology, vol. 79, no. 2, pp. e90–e95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Pundziute, J. D. Schuijf, J. W. Jukema et al., “Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease,” Journal of the American College of Cardiology, vol. 49, no. 1, pp. 62–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Sun, G. H. Choo, and K. H. Ng, “Coronary CT angiography: current status and continuing challenges,” British Journal of Radiology, vol. 85, no. 1013, pp. 495–510, 2012.
  18. R. A. O. ’Rourke, B. H. Brundage, V. F. Froelicher, et al., “American College ofCardiology/American Heart Association Expert ConsensusDocument on electron-beam computed tomography for thediagnosis and prognosis of coronary artery disease,” Journal of American College OfCardiology, vol. 36, no. 1, pp. 326–340, 2000.
  19. B. J. Kimura, R. J. Russo, V. Bhargava, M. B. McDaniel, K. L. Peterson, and A. N. DeMaria, “Atheroma morphology and distribution in proximal left anterior descending coronary artery: in vivo observations,” Journal of the American College of Cardiology, vol. 27, no. 4, pp. 825–831, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Reig and M. Petit, “Main trunk of the left coronary artery: anatomic study of the parameters of clinical interest,” Clinical Anatomy, vol. 17, no. 1, pp. 6–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Pflederer, J. Ludwig, D. Ropers, W. G. Daniel, and S. Achenbach, “Measurement of coronary artery bifurcation angles by multidetector computed tomography,” Investigative Radiology, vol. 41, no. 11, pp. 793–798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Kawasaki, H. Koga, T. Serikawa et al., “The bifurcation study using 64 multislice computed tomography,” Catheterization and Cardiovascular Interventions, vol. 73, no. 5, pp. 653–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. L. Papadopoulou, S. Brugaletta, H. M. Garcia-Garcia, et al., “Assessment of atherosclerotic plaques at coronary bifurcations with multidetector computed tomography and intravascular ultrasound-virtual histology,” European Heart Journal Cardiovascular Imaging, vol. 13, no. 8, pp. 635–642, 2012.
  24. G. A. Rodriguez-Granillo, H. M. García-García, J. Wentzel et al., “Plaque composition and its relationship with acknowledged shear stress patterns in coronary arteries,” Journal of the American College of Cardiology, vol. 47, no. 4, pp. 884–885, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Chaichana, Z. Sun, and J. Jewkes, “Hemodynamic analysis of the effect of different types of plaques in the left coronary artery,” Computerized Medical Imaging and Graphics, vol. 37, no. 3, pp. 197–206, 2013.
  26. T. Chaichana, Z. Sun, and J. Jewkes, “Computation of hemodynamics in the left coronary artery with variable angulations,” Journal of Biomechanics, vol. 44, no. 10, pp. 1869–1878, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. G. D. Giannoglou, A. P. Antoniadis, K. C. Koskinas, and Y. S. Chatzizisis, “Flow and atherosclerosis in coronary bifurcations,” EuroIntervention, vol. 6, pp. J16–J23, 2010. View at Scopus
  28. G. Finet, Y. Huo, G. Rioufol, J. Ohayon, P. Guerin, and G. S. Kassab, “Structure-function relation in the coronary artery tree: from fluid dynamics to arterial bifurcations,” EuroIntervention, vol. 6, pp. J10–J15, 2010. View at Scopus
  29. D. G. Katritsis, A. Theodorakakos, I. Pantos, M. Gavaises, N. Karcanias, and E. P. Efstathopoulos, “Flow pattern at stented coronary bifurcations: computational fluid dynamics analysis,” Circulation, Cardiovascular Interventions, vol. 5, no. 4, pp. 530–539, 2012.
  30. S. Motoyama, M. Sarai, H. Harigaya et al., “Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome,” Journal of the American College of Cardiology, vol. 54, no. 1, pp. 49–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Kitagawa, H. Yamamoto, J. Horiguchi et al., “Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography,” JACC: Cardiovascular Imaging, vol. 2, no. 2, pp. 153–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Ohashi, H. Yamamoto, J. Horiguchi et al., “Association between visceral adipose tissue area and coronary plaque morphology assessed by CT angiography,” JACC: Cardiovascular imaging, vol. 3, no. 9, pp. 908–917, 2010. View at Scopus
  33. G. Pundziute, J. D. Schuijf, J. W. Jukema et al., “Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis,” European Heart Journal, vol. 29, no. 19, pp. 2373–2381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Hoffmann, F. Moselewski, K. Nieman et al., “Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography,” Journal of the American College of Cardiology, vol. 47, no. 8, pp. 1655–1662, 2006. View at Publisher · View at Google Scholar · View at Scopus