About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 734893, 12 pages
http://dx.doi.org/10.1155/2013/734893
Clinical Study

Altered Functional Connectivity within and between Brain Modules in Absence Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

1Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
2State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
3University of Chinese Academy of Sciences, Beijing 100039, China
4Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China

Received 28 April 2013; Revised 25 August 2013; Accepted 25 August 2013

Academic Editor: Andrei Surguchov

Copyright © 2013 Cui-Ping Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Crunelli and N. Leresche, “Childhood absence epilepsy: genes, channels, neurons and networks,” Nature Reviews Neuroscience, vol. 3, no. 5, pp. 371–382, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Blumenfeld, “Consciousness and epilepsy: why are patients with absence seizures absent?” Progress in Brain Research, vol. 150, pp. 271–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. G. Sadleir, I. E. Scheffer, S. Smith, B. Carstensen, K. Farrell, and M. B. Connolly, “EEG features of absence seizures in idiopathic generalized epilepsy: impact of syndrome, age, and state,” Epilepsia, vol. 50, no. 6, pp. 1572–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. K. M. Meeren, J. P. M. Pijn, E. L. J. M. Van Luijtelaar, A. M. L. Coenen, and F. H. L. da Silva, “Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats,” The Journal of Neuroscience, vol. 22, no. 4, pp. 1480–1495, 2002. View at Scopus
  5. R. Berman, M. Negishi, M. Vestal et al., “Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures,” Epilepsia, vol. 51, no. 10, pp. 2011–2022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. E. Betting, S. B. Mory, Í. Lopes-Cendes et al., “MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures,” Epilepsy and Behavior, vol. 8, no. 3, pp. 575–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. L. E. Betting, S. B. Mory, L. M. Li et al., “Voxel-based morphometry in patients with idiopathic generalized epilepsies,” NeuroImage, vol. 32, no. 2, pp. 498–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Caplan, J. Levitt, P. Siddarth et al., “Frontal and temporal volumes in childhood absence epilepsy,” Epilepsia, vol. 50, no. 11, pp. 2466–2472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Chahboune, A. M. Mishra, M. N. DeSalvo et al., “DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy,” NeuroImage, vol. 47, no. 2, pp. 459–466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Luo, Y. Xia, Q. Li et al., “Diffusion and volumetry abnormalities in subcortical nuclei of patients with absence seizures,” Epilepsia, vol. 52, no. 6, pp. 1092–1099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. C. Y. de Wit, H. M. Schippers, I. F. M. de Coo et al., “Absence epilepsy and periventricular nodular heterotopia,” Seizure, vol. 19, no. 7, pp. 450–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 700–711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Greicius, “Resting-state functional connectivity in neuropsychiatric disorders,” Current Opinion in Neurology, vol. 21, no. 4, pp. 424–430, 2008. View at Scopus
  14. C. Luo, Q. Li, Y. Lai et al., “Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study,” Human Brain Mapping, vol. 32, no. 3, pp. 438–449, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al., “Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Doucet, M. Naveau, L. Petit et al., “Brain activity at rest: a multiscale hierarchical functional organization,” Journal of Neurophysiology, vol. 105, no. 6, pp. 2753–2763, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Liu, M. Liang, Y. Zhou et al., “Disrupted small-world networks in schizophrenia,” Brain, vol. 131, no. 4, pp. 945–961, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Engel Jr., “A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology,” Epilepsia, vol. 42, no. 6, pp. 796–803, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Chao-Gan and Z. Yu-Feng:, “DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI,” Frontiers in Systems Neuroscience, vol. 4, no. 13, 2010.
  20. Y. He, J. Wang, L. Wang et al., “Uncovering intrinsic modular organization of spontaneous brain activity in humans,” PLoS ONE, vol. 4, no. 4, Article ID e5226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Lüttjohann, S. Zhang, R. de Peijper, and G. van Luijtelaar, “Electrical stimulation of the epileptic focus in absence epileptic WAG/Rij rats: assessment of local and network excitability,” Neuroscience, vol. 188, pp. 125–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Gloor, “Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge,” Epilepsia, vol. 9, no. 3, pp. 249–263, 1968. View at Scopus
  23. X. Bai, M. Vestal, R. Berman et al., “Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging,” The Journal of Neuroscience, vol. 30, no. 17, pp. 5884–5893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Van Luijtelaar, E. Sitnikova, and A. Lüttjohann, “On the origin and suddenness of absences in genetic absence models,” Clinical EEG and Neuroscience, vol. 42, no. 2, pp. 83–97, 2011. View at Scopus
  25. O. Sporns, “The human connectome: a complex network,” Annals of the New York Academy of Sciences, vol. 1224, no. 1, pp. 109–125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Fojtiková, M. Brázdil, J. Horký et al., “Magnetic resonance spectroscopy of the thalamus in patients with typical absence epilepsy,” Seizure, vol. 15, no. 7, pp. 533–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. Tolmacheva, G. Van Luijtelaar, S. A. Chepurnov, Y. Kaminskij, and P. Mareš, “Cortical and limbic excitability in rats with absence epilepsy,” Epilepsy Research, vol. 62, no. 2-3, pp. 189–198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Sitnikova and G. van Luijtelaar, “Cortical and thalamic coherence during spike-wave seizures in WAG/Rij rats,” Epilepsy Research, vol. 71, no. 2-3, pp. 159–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. L. M. Birioukova, I. S. Midzyanovskaya, S. Lensu, L. Tuomisto, and G. van Luijtelaar, “Distribution of D1-like and D2-like dopamine receptors in the brain of genetic epileptic WAG/Rij rats,” Epilepsy Research, vol. 63, no. 2, pp. 89–96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Boly, C. Phillips, L. Tshibanda et al., “Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?” Annals of the New York Academy of Sciences, vol. 1129, pp. 119–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. J. Baars, “Global workspace theory of consciousness: toward a cognitive neuroscience of human experience,” Progress in Brain Research, vol. 150, pp. 45–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Arthuis, L. Valton, J. Rgis et al., “Impaired consciousness during temporal lobe seizures is related to increased long-distance corticalsubcortical synchronization,” Brain, vol. 132, no. 8, pp. 2091–2101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Bartolomei and L. Naccache, “The global workspace (GW) theory of consciousness and epilepsy,” Behavioural Neurology, vol. 24, no. 1, pp. 67–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Boveroux, A. Vanhaudenhuyse, M.-A. Bruno et al., “Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness,” Anesthesiology, vol. 113, no. 5, pp. 1038–1053, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Hutchinson, D. Pulsipher, K. Dabbs et al., “Children with new-onset epilepsy exhibit diffusion abnormalities in cerebral white matter in the absence of volumetric differences,” Epilepsy Research, vol. 88, no. 2-3, pp. 208–214, 2010. View at Publisher · View at Google Scholar · View at Scopus