About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 736815, 6 pages
http://dx.doi.org/10.1155/2013/736815
Review Article

Therapeutic Application of Cardiac Stem Cells and Other Cell Types

Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan

Received 30 April 2013; Accepted 15 June 2013

Academic Editor: Kimimasa Tobita

Copyright © 2013 Emiko Hayashi and Toru Hosoda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Bergmann, R. D. Bhardwaj, S. Bernard et al., “Evidence for cardiomyocyte renewal in humans,” Science, vol. 324, no. 5923, pp. 98–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Kajstura, N. Gurusamy, B. Ogórek et al., “Myocyte turnover in the aging human heart,” Circulation Research, vol. 107, no. 11, pp. 1374–1386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Kajstura, M. Rota, D. Cappetta, et al., “Cardiomyogenesis in the aging and failing human heart,” Circulation, vol. 126, no. 15, pp. 1869–1881, 2012. View at Publisher · View at Google Scholar
  5. P. Menasché, A. A. Hagège, M. Scorsin et al., “Myoblast transplantation for heart failure,” The Lancet, vol. 357, no. 9252, pp. 279–280, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Durrani, M. Konoplyannikov, M. Ashraf, and K. H. Haider, “Skeletal myoblasts for cardiac repair,” Regenerative Medicine, vol. 5, no. 6, pp. 919–932, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Menasché, O. Alfieri, S. Janssens et al., “The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation,” Circulation, vol. 117, no. 9, pp. 1189–1200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Sawa, S. Miyagawa, T. Sakaguchi et al., “Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case,” Surgery Today, vol. 42, no. 2, pp. 181–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Hosoda, D. D'Amario, M. C. Cabral-Da-Silva et al., “Clonality of mouse and human cardiomyogenesis in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 40, pp. 17169–17174, 2009. View at Publisher · View at Google Scholar
  10. D. Orlic, J. Kajstura, S. Chimenti et al., “Bone marrow cells regenerate infarcted myocardium,” Nature, vol. 410, no. 6829, pp. 701–705, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. B. E. Strauer, M. Brehm, T. Zeus et al., “Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans,” Circulation, vol. 106, no. 15, pp. 1913–1918, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Assmus, V. Schächinger, C. Teupe et al., “Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI),” Circulation, vol. 106, no. 24, pp. 3009–3017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Schächinger, S. Erbs, A. Elsässer et al., “Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction,” The New England Journal of Medicine, vol. 355, no. 12, pp. 1210–1221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Jeevanantham, M. Butler, A. Saad, A. Abdel-Latif, E. K. Zuba-Surma, and B. Dawn, “Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis,” Circulation, vol. 126, no. 5, pp. 551–568, 2012.
  15. H. Zimmet, P. Porapakkham, P. Porapakkham et al., “Short-and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials,” European Journal of Heart Failure, vol. 14, no. 1, pp. 91–105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. F. H. Seeger, T. Rasper, A. Fischer, et al., “Heparin disrupts the CXCR4/SDF-1 axis and impairs the functional capacity of bone marrow-derived mononuclear cells used for cardiovascular repair,” Circulation Research, vol. 111, no. 7, pp. 854–862, 2012. View at Publisher · View at Google Scholar
  17. U. Fischer-Rasokat, B. Assmus, F. H. Seeger et al., “A pilot trial to assess potential effects of selective Intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy,” Circulation: Heart Failure, vol. 2, no. 5, pp. 417–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. T. Sant'Anna, R. A. K. Kalil, A. S. Pretto Neto et al., “Global contractility increment in nonischemic dilated cardiomyopathy after free wall-only intramyocardial injection of autologous bone marrow mononuclear cells: an insight over stem cells clinical mechanism of action,” Cell Transplantation, vol. 19, no. 8, pp. 959–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Bolli, A. R. Chugh, D. D'Amario et al., “Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial,” The Lancet, vol. 378, no. 9806, pp. 1847–1857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Bolli, A. R. Chugh, D. D'Amario, et al., “Effect of cardiac stem cells in patients with ischemic cardiomyopathy: interim results of the SCIPIO trial up to 2 years after therapy,” Circulation, vol. 126, no. 23, p. 2784, 2012.
  21. S.-L. Chen, W.-W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” The American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. Y.-H. Choi, A. Kurtz, and C. Stamm, “Mesenchymal stem cells for cardiac cell therapy,” Human Gene Therapy, vol. 22, no. 1, pp. 3–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Hare, J. E. Fishman, G. Gerstenblith, et al., “Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial,” The Journal of the American Medical Association, vol. 308, no. 22, pp. 2369–2379, 2012.
  25. X.-P. Huang, Z. Sun, Y. Miyagi et al., “Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair,” Circulation, vol. 122, no. 23, pp. 2419–2429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. K. E. Hatzistergos, H. Quevedo, B. N. Oskouei et al., “Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation,” Circulation Research, vol. 107, no. 7, pp. 913–922, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. R. Williams, K. E. Hatzistergos, B. Addicott, et al., “Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction,” Circulation, vol. 127, no. 2, pp. 213–223, 2013. View at Publisher · View at Google Scholar
  28. J. H. Houtgraaf, W. K. den Dekker, B. M. van Dalen et al., “First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction,” Journal of the American College of Cardiology, vol. 59, no. 5, pp. 539–540, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. C.-W. Siu and H.-F. Tse, “Cardiac regeneration: messages from CADUCEUS,” The Lancet, vol. 379, no. 9819, pp. 870–871, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Bearzi, M. Rota, T. Hosoda et al., “Human cardiac stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 35, pp. 14068–14073, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. R. Chugh, G. M. Beache, J. H. Loughran, et al., “Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance,” Circulation, vol. 126, no. 11, supplement 1, pp. S54–S64, 2012.
  32. R. R. Makkar, R. R. Smith, K. Cheng et al., “Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial,” The Lancet, vol. 379, no. 9819, pp. 895–904, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. Li, Y. Guo, Q. Ou et al., “Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models,” Basic Research in Cardiology, vol. 106, no. 5, pp. 849–864, 2011. View at Publisher · View at Google Scholar · View at Scopus