About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 746053, 7 pages
http://dx.doi.org/10.1155/2013/746053
Research Article

Prescription Surveillance and Polymerase Chain Reaction Testing to Identify Pathogens during Outbreaks of Infection

1Sugiura Clinic, 2-8-3 Imaichi-Kita, Honmachi, Shimane, Izumo 693-0002, Japan
2Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
3Shimane Prefectural Central Hospital, Shimane, Izumo 693-8555, Japan
4Shimane University Hospital, Shimane, Izumo 693-8501, Japan
5Kawasaki City Health Institute of Public Health, Kanagawa, Kawasaki 210-0834, Japan

Received 10 November 2012; Accepted 6 January 2013

Academic Editor: Girdhari Lal

Copyright © 2013 Hiroaki Sugiura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Henning, “What is syndromic surveillance?” Morbidity and Mortality Weekly Report, vol. 53, pp. 5–11, 2004. View at Scopus
  2. T. Sugawara, Y. Ohkusa, Y. Ibuka, H. Kawanohara, K. Taniguchi, and N. Okabe, “Real-time prescription surveillance and its application to monitoring seasonal influenza activity in Japan,” Journal of Medical Internet Research, vol. 14, no. 1, p. e14, 2012.
  3. J. W. Buehler, R. L. Berkelman, D. M. Hartley, and C. J. Peters, “Syndromic surveillance and bioterrorism-related epidemics,” Emerging Infectious Diseases, vol. 9, no. 10, pp. 1197–1204, 2003. View at Scopus
  4. J. W. Buehler, A. Sonricker, M. Paladini, P. Soper, and F. Mostashari, “Syndromic surveillance practice in the United States: findings from a survey of state, territorial, and selected local health departments,” Advances in Disease Surveillance, vol. 6, no. 3, pp. 1–16, 2008.
  5. J. D. Cherry, Textbook of Pediatric Infectious Diseases, WB Saunders, Philadelphia, Pa, USA, 4th edition, 1998.
  6. “Mycoplasmal pneumonia as of September 2012, Japan,” IASR, vol. 33, no. 10, pp. 261–262, 2012.
  7. C. Koike, T. Nakamura, S. Inui, K. Okuda, C. Nakata, H. Fujimoto, et al., “Macrolide resistance and detection in Mycoplasma pneumoniae at Kansai Medical University Hirakata Hospital,” Kansenshogaku Zasshi, vol. 85, no. 6, pp. 652–657, 2011 (Japanese).
  8. M. Narita, “Utility and limitation of the rapid IgM antibody detection test for the diagnosis of Mycoplasma pneumoniae infection,” Kansenshogaku Zasshi, vol. 81, no. 2, pp. 149–154, 2007 (Japanese). View at Scopus
  9. T. Fujimoto, T. Okafuji, M. Ito, S. Nukuzuma, M. Chikahira, and O. Nishio, “Evaluation of a bedside immunochromatographic test for detection of adenovirus in respiratory samples, by comparison to virus isolation, PCR, and real-time PCR,” Journal of Clinical Microbiology, vol. 42, no. 12, pp. 5489–5492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Hamano-Hasegawa, M. Morozumi, E. Nakayama et al., “Comprehensive detection of causative pathogens using real-time PCR to diagnose pediatric community-acquired pneumonia,” Journal of Infection and Chemotherapy, vol. 14, no. 6, pp. 424–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Fujimoto, M. Konagaya, M. Enomoto et al., “Novel high-speed real-time PCR method (Hyper-PCR): results from its application to adenovirus diagnosis,” Japanese Journal of Infectious Diseases, vol. 63, no. 1, pp. 31–35, 2010. View at Scopus
  12. M. Leven, D. Ursi, H. Van Bever, W. Quint, H. G. M. Niesters, and H. Goossens, “Detection of Mycoplasma pneumoniae by two polymerase chain reactions and role of M. pneumoniae in acute respiratory tract infections in pediatric patients,” Journal of Infectious Diseases, vol. 173, no. 6, pp. 1445–1452, 1996. View at Scopus
  13. L. Vijgen, E. Moës, E. Keyaerts, S. Li, and M. Van Ranst, “A pancoronavirus RT-PCR assay for detection of all known coronaviruses,” Methods in Molecular Biology, vol. 454, pp. 3–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Katano, M. Kano, T. Nakamura, T. Kanno, H. Asanuma, and T. Sata, “A novel real-time PCR system for simultaneous detection of human viruses in clinical samples from patients with uncertain diagnoses,” Journal of Medical Virology, vol. 83, no. 2, pp. 322–330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Hu, M. Colella, J. S. Tam, R. Rappaport, and S. M. Cheng, “Simultaneous detection, subgrouping, and quantitation of respiratory syncytial virus A and B by real-time PCR,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 149–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Bellau-Pujol, A. Vabret, L. Legrand et al., “Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses,” Journal of Virological Methods, vol. 126, no. 1-2, pp. 53–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Fujimoto, H. Izumi, N. Okabe et al., “Usefulness of real-time reverse transcription-polymerase chain reaction for the diagnosis of echovirus aseptic meningitis using cerebrospinal fluid,” Japanese Journal of Infectious Diseases, vol. 62, no. 6, pp. 455–457, 2009. View at Scopus
  18. D. L. Cooper, G. E. Smith, F. Chinemana et al., “Linking syndromic surveillance with virological self-sampling,” Epidemiology and Infection, vol. 136, no. 2, pp. 222–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. K. Schindeler, D. J. Muscatello, M. J. Ferson, K. D. Rogers, P. Grant, and T. Churches, “Evaluation of alternative respiratory syndromes for specific syndromic surveillance of influenza and respiratory syncytial virus: a time series analysis,” BMC Infectious Diseases, vol. 9, article 190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Rabadan, N. Calman, and G. Hripcsak, “Next generation syndromic surveillance: molecular epidemiology, electronic health records and the pandemic influenza A, (H1N1) virus,” PLoS Currents, vol. 1, Article ID RRN1012, 2009.
  21. D. De Florentiis, V. Parodi, A. Orsi, A. Rossi, F. Altomonte, P. Canepa, et al., “Impact of influenza during the post-pandemic season: epidemiological picture from syndromic and virological surveillance,” Journal of Preventive Medicine and Hygiene, vol. 52, no. 3, pp. 134–136, 2011.
  22. B. Winther, “Rhinovirus infections in the upper airway,” Proceedings of the American Thoracic Society, vol. 8, no. 1, pp. 79–89, 2011. View at Scopus
  23. X. Yu, R. Lu, Z. Wang, N. Zhu, W. Wang, D. Julian, et al., “Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in Beijing,” PLoS ONE, vol. 7, no. 2, Article ID e32174, 2012.
  24. M. Morozumi, T. Takahashi, and K. Ubukata, “Macrolide-resistant Mycoplasma pneumoniae: characteristics of isolates and clinical aspects of community-acquired pneumonia,” Journal of Infection and Chemotherapy, vol. 16, no. 2, pp. 78–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Ozaki, N. Nishimura, J. Ahn et al., “Utility of a rapid diagnosis kit for Mycoplasma pneumoniae pneumonia in children, and the antimicrobial susceptibility of the isolates,” Journal of Infection and Chemotherapy, vol. 13, no. 4, pp. 204–207, 2007. View at Publisher · View at Google Scholar · View at Scopus