About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 752514, 12 pages
http://dx.doi.org/10.1155/2013/752514
Research Article

Increasing Affinity of Interferon- Receptor 1 to Interferon- by Computer-Aided Design

Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic

Received 29 April 2013; Revised 6 August 2013; Accepted 13 August 2013

Academic Editor: David Stammers

Copyright © 2013 Pavel Mikulecký et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Kraemer-Pecore, A. M. Wollacott, and J. R. Desjarlais, “Computational protein design,” Current Opinion in Chemical Biology, vol. 5, no. 6, pp. 690–695, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Kortemme and D. Baker, “Computational design of protein-protein interactions,” Current Opinion in Chemical Biology, vol. 8, no. 1, pp. 91–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Reichmann, O. Rahat, M. Cohen, H. Neuvirth, and G. Schreiber, “The molecular architecture of protein-protein binding sites,” Current Opinion in Structural Biology, vol. 17, no. 1, pp. 67–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Mandell and T. Kortemme, “Computer-aided design of functional protein interactions,” Nature Chemical Biology, vol. 5, no. 11, pp. 797–807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Karanicolas and B. Kuhlman, “Computational design of affinity and specificity at protein-protein interfaces,” Current Opinion in Structural Biology, vol. 19, no. 4, pp. 458–463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Smith and T. Kortemme, “Predicting the tolerated sequences for proteins and protein interfaces using rosettabackrub flexible backbone design,” PLoS ONE, vol. 6, no. 7, Article ID e20451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Fleishman, T. A. Whitehead, E. M. Strauch, J. E. Corn, S. B. Qin, et al., “Community-wide assessment of protein-interface modeling suggests improvements to design methodology,” Journal of Molecular Biology, vol. 414, pp. 289–302, 2011.
  8. G. P. Smith, “Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface,” Science, vol. 228, no. 4705, pp. 1315–1317, 1985. View at Scopus
  9. G. P. Smith and V. A. Petrenko, “Phage display,” Chemical Reviews, vol. 97, no. 2, pp. 391–410, 1997. View at Scopus
  10. J. W. Kehoe and B. K. Kay, “Filamentous phage display in the new millennium,” Chemical Reviews, vol. 105, no. 11, pp. 4056–4072, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Hanes and A. Plückthun, “In vitro selection and evolution of functional proteins by using ribosome display,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 4937–4942, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Lipovsek and A. Plückthun, “In-vitro protein evolution by ribosome display and mRNA display,” Journal of Immunological Methods, vol. 290, no. 1-2, pp. 51–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. Fleishman, T. A. Whitehead, D. C. Ekiert et al., “Computational design of proteins targeting the conserved stem region of influenza hemagglutinin,” Science, vol. 332, no. 6031, pp. 816–821, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Karanicolas, J. E. Corn, I. Chen et al., “A De Novo protein binding pair by computational design and directed evolution,” Molecular Cell, vol. 42, no. 2, pp. 250–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Whitehead, A. Chevalier, Y. Song, C. Dreyfus, S. J. Fleishman, et al., “Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing,” Nature Biotechnology, vol. 30, pp. 543–548, 2012.
  16. T. S. Chen and A. E. Keating, “Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods,” Protein Science, vol. 21, pp. 949–963, 2012.
  17. D. J. Thiel, M.-H. Le Du, R. L. Walter et al., “Observation of an unexpected third receptor-molecule in the crystal structure of human interferon-γ receptor complex,” Structure, vol. 8, no. 9, pp. 927–936, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Lassmann, O. Frings, and E. L. L. Sonnhammer, “Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features,” Nucleic Acids Research, vol. 37, no. 3, pp. 858–865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. I. E. Efremov, M. Y. Fursov, and Y. E. Danilova, Ugene: High Performance Genome Analysis Suite, Moscow, Russia, 2009.
  20. U. Müller, U. Steinhoff, L. F. L. Reis et al., “Functional role of type I and type II interferons in antiviral defense,” Science, vol. 264, no. 5167, pp. 1918–1921, 1994. View at Scopus
  21. E. C. Borden, G. C. Sen, G. Uze et al., “Interferons at age 50: past, current and future impact on biomedicine,” Nature Reviews Drug Discovery, vol. 6, no. 12, pp. 975–990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, “Interferon-γ: an overview of signals, mechanisms and functions,” Journal of Leukocyte Biology, vol. 75, no. 2, pp. 163–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. P. W. Gray and D. V. Goeddel, “Structure of the human immune interferon gene,” Nature, vol. 298, no. 5877, pp. 859–863, 1982. View at Scopus
  24. J. N. Ahmad, J. Li, L. Biedermannova, M. Kuchar, H. Sipova, et al., “Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein g,” Proteins, vol. 80, pp. 774–789, 2012.
  25. H. Sipova, V. Sevcu, M. Kuchar, J. N. Ahmad, P. Mikulecky, et al., “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sensors and Actuators B, vol. 174, pp. 306–311, 2012.
  26. M. U. Johansson, I.-M. Frick, H. Nilsson et al., “Structure, specificity, and mode of interaction for bacterial albumin-binding modules,” Journal of Biological Chemistry, vol. 277, no. 10, pp. 8114–8120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. W. T. Windsor, L. J. Walter, R. Syto, J. Fossetta, W. J. Cook, et al., “Purification and crystallization of a complex between human interferon gamma receptor (extracellular domain) and human interferon gamma,” Proteins, vol. 26, pp. 108–114, 1996.
  28. L. Michiels, J. Haelewyn, P. Proost, and M. De Ley, “The soluble extracellular portion of the human interferon-γ receptor is a valid substitute for evaluating binding characteristics and for neutralizing the biological activity of this cytokine,” International Journal of Biochemistry and Cell Biology, vol. 30, no. 4, pp. 505–516, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Randal and A. A. Kossiakoff, “The structure and activity of a monomeric interferon-γ:α-chain receptor signaling complex,” Structure, vol. 9, no. 2, pp. 155–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. S. E. Ealick, W. J. Cook, S. Vijay-Kumar et al., “Three-dimensional structure of recombinant human interferon-γ,” Science, vol. 252, no. 5006, pp. 698–702, 1991. View at Scopus
  31. A. Landar, B. Curry, M. H. Parker et al., “Design, characterization, and structure of a biologically active single-chain mutant of human IFN-γ,” Journal of Molecular Biology, vol. 299, no. 1, pp. 169–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Serrano, “The FoldX web server: an online force field,” Nucleic Acids Research, vol. 33, no. 2, pp. W382–W388, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Eastman and V. S. Pande, “Openmm: a hardware-independent framework for molecular simulations,” Computing in Science and Engineering, vol. 12, pp. 34–39, 2010.
  35. M. S. Friedrichs, P. Eastman, V. Vaidyanathan et al., “Accelerating molecular dynamic simulation on graphics processing units,” Journal of Computational Chemistry, vol. 30, no. 6, pp. 864–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, “GROMACS: fast, flexible, and free,” Journal of Computational Chemistry, vol. 26, no. 16, pp. 1701–1718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Eswar, B. John, N. Mirkovic et al., “Tools for comparative protein structure modeling and analysis,” Nucleic Acids Research, vol. 31, no. 13, pp. 3375–3380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. P. A. Kollman, “Advances and continuing challenges in achieving realistic and predictive simulations of the properties of organic and biological molecules,” Accounts of Chemical Research, vol. 29, no. 10, pp. 461–469, 1996. View at Scopus
  39. W. F. DeGrado, Z. R. Wasserman, and V. Chowdry, “Sequence and structural homologies among type I and type II interferons,” Nature, vol. 300, no. 5890, pp. 379–381, 1982. View at Scopus
  40. T. Arakawa, Y.-R. Hsu, and D. Chang, “Structure and activity of glycosylated human interferon-γ,” Journal of Interferon Research, vol. 6, no. 6, pp. 687–695, 1986. View at Scopus
  41. S. Pestka, J. A. Langer, K. C. Zoon, and C. E. Samuel, “Interferons and their actions,” Annual Review of Biochemistry, vol. 56, pp. 727–777, 1987. View at Scopus
  42. H. C. Kelker, Y. K. Yip, P. Anderson, and J. Vilcek, “Effects of glycosidase treatment on the physicochemical properties and biological activity of human interferon-γ,” Journal of Biological Chemistry, vol. 258, no. 13, pp. 8010–8013, 1983. View at Scopus
  43. E. Sviridova, L. Bumba, P. Rezacova et al., “Crystallization and preliminary crystallographic characterization of the iron-regulated outer membrane lipoprotein FrpD from Neisseria meningitidis,” Acta Crystallographica Section F, vol. 66, no. 9, pp. 1119–1123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. B. G. Pierce, J. N. Haidar, Y. Yu, and Z. Weng, “Combinations of affinity-enhancing mutations in a T cell receptor reveal highly nonadditive effects within and between complementarity determining regions and chains,” Biochemistry, vol. 49, no. 33, pp. 7050–7059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. A. Clark, P. A. Boriack-Sjodin, J. Eldredge et al., “Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design,” Protein Science, vol. 15, no. 5, pp. 949–960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Song, G. A. Lazar, T. Kortemme et al., “Rational design of intercellular adhesion molecule-1 (ICAM-1) variants for antagonizing integrin lymphocyte function-associated antigen-1-dependent adhesion,” Journal of Biological Chemistry, vol. 281, no. 8, pp. 5042–5049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Han, H. J. Kim, S.-C. Lee et al., “Structure-based rational design of a Toll-like receptor 4 (TLR4) decoy receptor with high binding affinity for a target protein,” PLoS ONE, vol. 7, no. 2, Article ID e30929, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Sharabi, Y. Peleg, E. Mashiach et al., “Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase,” Protein Engineering, Design and Selection, vol. 22, no. 10, pp. 641–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. M. Shifman and S. L. Mayo, “Modulating calmodulin binding specificity through computational protein design,” Journal of Molecular Biology, vol. 323, no. 3, pp. 417–423, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. D. W. Sammond, Z. M. Eletr, C. Purbeck, and B. Kuhlman, “Computational design of second-site suppressor mutations at protein-protein interfaces,” Proteins, vol. 78, no. 4, pp. 1055–1065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. E. De Genst, D. Areskoug, K. Decanniere, S. Muyldermans, and K. Andersson, “Kinetic and affinity predictions of a protein-protein interaction using multivariate experimental design,” Journal of Biological Chemistry, vol. 277, no. 33, pp. 29897–29907, 2002. View at Scopus
  52. J. S. Marvin and H. B. Lowman, “Redesigning an antibody fragment for faster association with its antigen,” Biochemistry, vol. 42, no. 23, pp. 7077–7083, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Selzer, S. Albeck, and G. Schreiber, “Rational design of faster associating and tighter binding protein complexes,” Nature Structural Biology, vol. 7, no. 7, pp. 537–541, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. C. S. E. Lengyel, L. J. Willis, P. Mann et al., “Mutations designed to destabilize the receptor-bound conformation increase MICA-NKG2D association rate and affinity,” Journal of Biological Chemistry, vol. 282, no. 42, pp. 30658–30666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Schreiber, Y. Shaul, and K. E. Gottschalk, “Electrostatic design of protein-protein association rates,” Methods in Molecular Biology, vol. 340, pp. 235–249, 2006. View at Scopus
  56. R. D. Gorham Jr., C. A. Kieslich, and D. Morikis, “Electrostatic clustering and free energy calculations provide a foundation for protein design and optimization,” Annals of Biomedical Engineering, vol. 39, no. 4, pp. 1252–1263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Krissinel and K. Henrick, “Inference of macromolecular assemblies from crystalline state,” Journal of Molecular Biology, vol. 372, no. 3, pp. 774–797, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. A. Nuara, L. J. Walter, N. J. Logsdon et al., “Structure and mechanism of IFN-γ antagonism by an orthopoxvirus IFN-γ-binding protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 6, pp. 1861–1866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. A. M. Levin, D. L. Bates, A. M. Ring et al., “Exploiting a natural conformational switch to engineer an interleukin-2 'superkine',” Nature, vol. 484, no. 7395, pp. 529–533, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. R. T. Bradshaw, B. H. Patel, E. W. Tate, R. J. Leatherbarrow, and I. R. Gould, “Comparing experimental and computational alanine scanning techniques for probing a prototypical protein-protein interaction,” Protein Engineering, Design and Selection, vol. 24, no. 1-2, pp. 197–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. O. Sharabi, A. Dekel, and J. M. Shifman, “Triathlon for energy functions: who is the winner for design of protein-protein interactions?” Proteins, vol. 79, no. 5, pp. 1487–1498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. R. T. Bradshaw, P. G. A. Aronica, E. W. Tate, R. J. Leatherbarrow, and I. R. Gould, “Mutational Locally Enhanced Sampling (MULES) for quantitative prediction of the effects of mutations at protein-protein interfaces,” Chemical Science, vol. 3, no. 5, pp. 1503–1511, 2012. View at Publisher · View at Google Scholar · View at Scopus