About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 752603, 8 pages
http://dx.doi.org/10.1155/2013/752603
Research Article

Soluble Flt-1 Gene Delivery in Acute Myeloid Leukemic Cells Mediating a Nonviral Gene Carrier

1Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam 69316, Iran
3UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
4Perdana University Graduate School of Medicine, Perdana University, 43400 Serdang, Selangor, Malaysia
5Department of Microbiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
6Hematology Department, School of Allied Health Medicine, Tehran University of Medical Sciences, Tehran, Iran

Received 25 May 2012; Revised 28 October 2012; Accepted 15 November 2012

Academic Editor: Richard Tucker

Copyright © 2013 Razieh Amini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Griffin and B. Lowenberg, “Clonogenic cells in acute myeloblastic leukemia,” Blood, vol. 68, no. 6, pp. 1185–1195, 1986. View at Scopus
  2. E. Estey and H. Döhner, “Acute myeloid leukaemia,” The Lancet, vol. 368, no. 9550, pp. 1894–1907, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Hanahan and J. Folkman, “Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,” Cell, vol. 86, no. 3, pp. 353–364, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Folkman, “Clinical applications of research on angiogenesis,” The New England Journal of Medicine, vol. 333, no. 26, pp. 1757–1763, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Risau, “Mechanisms of angiogenesis,” Nature, vol. 386, no. 6626, pp. 671–674, 1997. View at Scopus
  6. J. W. Hussong, G. M. Rodgers, and P. J. Shami, “Evidence of increased angiogenesis in patients with acute myeloid leukemia,” Blood, vol. 95, no. 1, pp. 309–313, 2000. View at Scopus
  7. N. Ferrara, “Role of vascular endothelial growth factor in the regulation of angiogenesis,” Kidney International, vol. 56, no. 3, pp. 794–814, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Frankel and P. S. Gill, “VEGF and myeloid leukemias,” Leukemia Research, vol. 28, no. 7, pp. 675–677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Barbarroja, L. Arístides-Torres, V. Hernandez et al., “Coordinated deregulation of cellular receptors, proangiogenic factors and intracellular pathways in acute myeloid leukaemia,” Leukemia and Lymphoma, vol. 48, no. 6, pp. 1187–1199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Aguayo, E. Estey, H. Kantarjian et al., “Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia,” Blood, vol. 94, no. 11, pp. 3717–3721, 1999. View at Scopus
  11. G. Schuch, M. Machluf, G. Bartsch et al., “In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo,” Blood, vol. 100, no. 13, pp. 4622–4628, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Padró, S. Ruiz, R. Bieker et al., “Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia,” Blood, vol. 95, no. 8, pp. 2637–2644, 2000. View at Scopus
  13. B. Wegiel, J. Ekberg, K. M. Talasila, S. Jalili, and J. L. Persson, “The role of VEGF and a functional link between VEGF and p27Kip1 in acute myeloid leukemia,” Leukemia, vol. 23, no. 2, pp. 251–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Grimwade, “The clinical significance of cytogenetic abnormalities in acute myeloid leukaemia,” Best Practice and Research, vol. 14, no. 3, pp. 497–529, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. L. M. Kelly and D. G. Gilliland, “Genetics of myeloid leukemias,” Annual Review of Genomics and Human Genetics, vol. 3, no. 1, pp. 179–198, 2002.
  16. A. Kume, Y. Hanazono, H. Mizukami, T. Okada, and K. Ozawa, “Selective expansion of transduced cells for hematopoietic stem cell gene therapy,” International Journal of Hematology, vol. 76, no. 4, pp. 299–304, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Toi, H. Bando, T. Ogawa, M. Muta, C. Hornig, and H. A. Weich, “Significance of vascular endothelial growth factor (VEGF)/soluble VEGF receptor-1 relationship in breast cancer,” International Journal of Cancer, vol. 98, no. 1, pp. 14–18, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Lamszus, U. Ulbricht, J. Matschke, M. A. Brockmann, R. Fillbrandt, and M. Westphal, “Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A,” Clinical Cancer Research, vol. 9, no. 4, pp. 1399–1405, 2003. View at Scopus
  19. C. Ye, C. Feng, S. Wang, et al., “sFlt-1 gene therapy of follicular thyroid carcinoma,” Endocrinology, vol. 145, no. 2, pp. 817–822, 2004.
  20. C. K. Goldman, R. L. Kendall, G. Cabrera et al., “Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8795–8800, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. H. L. Kong, D. Hecht, W. Song et al., “Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor,” Human Gene Therapy, vol. 9, no. 6, pp. 823–833, 1998. View at Scopus
  22. P. J. Mahasreshti, J. G. Navarro, M. Kataram et al., “Adenovirus-mediated soluble FLT-1 gene therapy for ovarian carcinoma,” Clinical Cancer Research, vol. 7, no. 7, pp. 2057–2066, 2001. View at Scopus
  23. J. Liu, J. Li, C. Su, B. Huang, and S. Luo, “Soluble fms-like tyrosine kinase-1 expression inhibits the growth of multiple myeloma in nude mice,” Acta Biochimica et Biophysica Sinica, vol. 39, no. 7, pp. 499–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Barleon, F. Totzke, C. Herzog et al., “Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT- 1,” Journal of Biological Chemistry, vol. 272, no. 16, pp. 10382–10388, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. W. J. Kim, J. W. Yockman, M. Lee, J. H. Jeong, Y. H. Kim, and S. W. Kim, “Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis,” Journal of Controlled Release, vol. 106, no. 1-2, pp. 224–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. He, B. Liu, C. Yang, R. C. Yang, G. Tobelem, and Z. C. Han, “Inhibition of K562 leukemia angiogenesis and growth by expression of antisense vascular endothelial growth factor (VEGF) sequence,” Cancer Gene Therapy, vol. 10, no. 12, pp. 879–886, 2003. View at Publisher · View at Google Scholar · View at Scopus