About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 752870, 9 pages
http://dx.doi.org/10.1155/2013/752870
Research Article

An Experimental Approach for Selecting Appropriate Rodent Diets for Research Studies on Metabolic Disorders

1College of Veterinary and Animal Sciences, Mannuthy, Thrissur 680 651, India
2R&D Centre, Natural Remedies, Plot No. 5B, Veerasandra Indl. Area, 19th K.M. Stone, Hosur Road, Electronic City, Bangalore, Karnataka 560 100, India

Received 13 April 2013; Revised 29 July 2013; Accepted 30 July 2013

Academic Editor: Abel Romero-Corral

Copyright © 2013 Suja Rani Sasidharan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Buettner, K. G. Parhofer, M. Woenckhaus et al., “Defining high-fat-diet rat models: metabolic and molecular effects of different fat types,” Journal of Molecular Endocrinology, vol. 36, no. 3, pp. 485–501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Gajda, M. A. Pellizzon, M. R. Ricci, and E. A. Ulman, Diet-Induced Metabolic Syndrome in Rodent Models, Animal Lab News, 2007.
  3. P. M. Newberne and A. V. Sotnikov, “Diet: the neglected variable in chemical safety evaluations,” Toxicologic Pathology, vol. 24, no. 6, pp. 746–756, 1996. View at Scopus
  4. E. D. Lephart, K. D. R. Setchell, R. J. Handa, and T. D. Lund, “Behavioral effects of endocrine-disrupting substances: phytoestrogens,” Institute for Laboratory Animal Research Journal, vol. 45, no. 4, pp. 443–454, 2004. View at Scopus
  5. National Research Council, Nutrient Requirement of Laboratory Animals, National Academy Press, Washington, DC, USA, 4th edition, 1995.
  6. P. G. Reeves, F. H. Nielsen, and G. C. Fahey Jr., “AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet,” Journal of Nutrition, vol. 123, no. 11, pp. 1939–1951, 1993. View at Scopus
  7. M. R. Ricci and E. A. Ulman, “Laboratory animal diets: a critical part of your in vivo research,” Animal Lab News, vol. 4, no. 6, pp. 1–6, 2005.
  8. C. H. Warden and J. S. Fisler, “Comparisons of diets used in animal models of high-fat feeding,” Cell Metabolism, vol. 7, no. 4, p. 277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Y. Reuter, “Diet-induced models for obesity and type 2 diabetes,” Drug Discovery Today, vol. 4, no. 1, pp. 3–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Srinivasan, B. Viswanad, L. Asrat, C. L. Kaul, and P. Ramarao, “Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening,” Pharmacological Research, vol. 52, no. 4, pp. 313–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. Hettihewa, S. Palangasinghe, S. S. Jayasinghe, S. W. Gunasekara, and T. P. Weerarathna, “Comparison of insulin resistance by indirect methods—HOMA, QUICKI and mcauley—with fasting insulin in patients with type 2 diabetes in Galle, sri Lanka: A Pilot Study,” Online Journal of Health and Allied Sciences, vol. 5, no. 1, pp. 1–8, 2006. View at Scopus
  12. F. Lei, X. N. Zhang, W. Wang et al., “Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice,” International Journal of Obesity, vol. 31, no. 6, pp. 1023–1029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Buettner, J. Schölmerich, and L. C. Bollheimer, “High-fat diets: modeling the metabolic disorders of human obesity in rodents,” Obesity, vol. 15, no. 4, pp. 798–808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yang, L. Zhou, Y. Gu et al., “Dietary chickpeas reverse visceral adiposity, dyslipidaemia and insulin resistance in rats induced by a chronic high-fat diet,” British Journal of Nutrition, vol. 98, no. 4, pp. 720–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S.-S. Yoon, Y.-H. Rhee, H.-J. Lee et al., “Uncoupled protein 3 and p38 signal pathways are involved in anti-obesity activity of Solanum tuberosum l. cv. bora valley,” Journal of Ethnopharmacology, vol. 118, no. 3, pp. 396–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Lee, S. K. Choi, and J. S. Seo, “Grape skin improves antioxidant capacity in rats fed a high fat diet,” Nutrition Research and Practice, vol. 3, no. 4, pp. 279–285, 2009. View at Publisher · View at Google Scholar
  17. S. C. Woods, R. J. Seeley, P. A. Rushing, D. D'Alessio, and P. Tso, “A controlled high-fat diet induces an obese syndrome in rats,” Journal of Nutrition, vol. 133, no. 4, pp. 1081–1087, 2003. View at Scopus
  18. H. Takeuchi, T. Matsuo, K. Tokuyama, Y. Shimomura, and M. Suzuki, “Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet,” Journal of Nutrition, vol. 125, no. 4, pp. 920–925, 1995. View at Scopus
  19. K. K. Bence, “Hepatic PTP1B deficiency: the promise of a treatment for metabolic syndrome,” Journal of Clinical Metabolism & Diabetes, vol. 1, no. 1, pp. 27–33, 2010.
  20. P. Angulo and K. D. Lindor, “Non-alcoholic fatty liver disease,” Journal of Gastroenterology and Hepatology, vol. 17, pp. S186–S190, 2002.
  21. C. S. Lieber, M. A. Leo, K. M. Mak et al., “Model of nonalcoholic steatohepatitis,” American Journal of Clinical Nutrition, vol. 79, no. 3, pp. 502–509, 2004. View at Scopus
  22. J. Shang, L.-L. Chen, F.-X. Xiao, H. Sun, H.-C. Ding, and H. Xiao, “Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase,” Acta Pharmacologica Sinica, vol. 29, no. 6, pp. 698–706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. M. Safwat, S. Pisanò, E. D'Amore et al., “Induction of non-alcoholic fatty liver disease and insulin resistance by feeding a high-fat diet in rats: does coenzyme Q monomethyl ether have a modulatory effect?” Nutrition, vol. 25, no. 11-12, pp. 1157–1168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Qureshi and G. A. Abrams, “Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease,” World Journal of Gastroenterology, vol. 13, no. 26, pp. 3540–3553, 2007. View at Scopus
  25. J. D. Browning and J. D. Horton, “Molecular mediators of hepatic steatosis and liver injury,” Journal of Clinical Investigation, vol. 114, no. 2, pp. 147–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Hrebícek, V. Janout, J. Malincíková, D. Horáková, and L. Cízek, “Detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention,” Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 1, pp. 144–147, 2002. View at Publisher · View at Google Scholar
  27. J. M. A. Hannan, L. Ali, J. Khaleque, M. Akhter, P. R. Flatt, and Y. H. A. Abdel-Wahab, “Aqueous extracts of husks of Plantago ovata reduce hyperglycaemia in type 1 and type 2 diabetes by inhibition of intestinal glucose absorption,” British Journal of Nutrition, vol. 96, no. 1, pp. 131–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. D. S. De Oliveira, “Glycogen levels and energy status of the liver of fasting rats with diabetes types 1 and 2,” Brazilian Archives of Biology and Technology, vol. 50, no. 5, pp. 785–791, 2007. View at Scopus
  29. J. Y. Jung, Y. Lim, M. S. Moon, J. Y. Kim, and O. Kwon, “Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats,” Nutrition and Metabolism, vol. 8, no. 18, pp. 2–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. P. N. Surampudi, J. John-Kalarickal, and V. A. Fonseca, “Emerging concepts in the pathophysiology of type 2 diabetes mellitus,” Mount Sinai Journal of Medicine, vol. 76, no. 3, pp. 216–226, 2009. View at Publisher · View at Google Scholar · View at Scopus