About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 754946, 8 pages
http://dx.doi.org/10.1155/2013/754946
Research Article

High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

Diagnostic Services Unit, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama, Bahrain

Received 4 April 2013; Accepted 8 July 2013

Academic Editor: Stefano Curcio

Copyright © 2013 Ghada Al-Kafaji and Jamal Golbahar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, no. 14, pp. 977–986, 1993.
  2. M. W. Steffes, “Glycemic control and the initiation and progression of the complications of diabetes mellitus,” Kidney International, Supplement, vol. 51, no. 63, pp. S36–S39, 1997. View at Scopus
  3. J. Wong, S. V. McLennan, L. Molyneaux, D. Min, S. M. Twigg, and D. K. Yue, “Mitochondrial DNA content in peripheral blood monocytes: relationship with age of diabetes onsetand diabetic complications,” Diabetologia, vol. 52, no. 9, pp. 1953–1961, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Song, J. Y. Oh, Y.-A. H. Sung, Y. K. Pak, K. S. Park, and H. K. Lee, “Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients,” Diabetes Care, vol. 24, no. 5, pp. 865–869, 2001. View at Scopus
  5. A. N. Malik, R. Shahni, and M. M. Iqbal, “Increased peripheral blood mitochondrial DNA in type 2 diabetic patients with nephropathy,” Diabetes Research and Clinical Practice, vol. 86, no. 2, pp. e22–e24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. L. Montier, J. J. Deng, and Y. Bai, “Number matters: control of mammalian mitochondrial DNA copy number,” Journal of Genetics and Genomics, vol. 36, no. 3, pp. 125–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Nishikawa, D. Edelstein, X. L. Du et al., “Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage,” Nature, vol. 404, no. 6779, pp. 787–790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. H. B. Lee, M.-R. Yu, Y. Yang, Z. Jiang, and H. Ha, “Reactive oxygen species-regulated signaling pathways in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 14, no. 3, pp. S241–S245, 2003. View at Scopus
  10. H. Ha and H. B. Lee, “Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney,” Nephrology, vol. 10, no. 2, pp. S7–S10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Catherwood, L. A. Powell, P. Anderson, D. McMaster, P. C. Sharpe, and E. R. Trimble, “Glucose-induced oxidative stress in mesangial cells,” Kidney International, vol. 61, no. 2, pp. 599–608, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-Z. Pan, L. Zhang, M.-Y. Guo et al., “The oxidative stress status in diabetes mellitus and diabetic nephropathy,” Acta Diabetologica, vol. 47, no. 1, pp. S71–S76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Qian Lu, Y. Zhai, Q. Cheng et al., “Akt/FoxO3a/MnSOD pathway is involved in the regulation of oxidative stress in diabetic nephropathy,” Experimental Physiology, vol. 98, no. 4, pp. 934–945, 2013.
  14. T. Ide, H. Tsutsui, S. Hayashidani et al., “Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction,” Circulation Research, vol. 88, no. 5, pp. 529–535, 2001. View at Scopus
  15. J. H. Santos, L. Hunakova, Y. Chen, C. Bortner, and B. Van Houten, “Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1728–1734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. V. A. Bohr, “Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells,” Free Radical Biology and Medicine, vol. 32, no. 9, pp. 804–812, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. H.-C. Lee and Y.-H. Wei, “Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 4, pp. 822–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Barrientos, J. Casademont, F. Cardellach et al., “Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process,” Biochemical and Molecular Medicine, vol. 62, no. 2, pp. 165–171, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Barrientos, J. Casademont, F. Cardellach, X. Estivill, A. Urbano-Marquez, and V. Nunes, “Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging,” Molecular Brain Research, vol. 52, no. 2, pp. 284–289, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-C. Wang, W.-C. Lee, S.-C. Liao et al., “Mitochondrial DNA copy number correlates with oxidative stress and predicts mortality in nondiabetic hemodialysis patients,” Journal of Nephrology, vol. 24, no. 3, pp. 351–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-S. Liu, C.-S. Tsai, C.-L. Kuo et al., “Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes,” Free Radical Research, vol. 37, no. 12, pp. 1307–1317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Al-Kafaji and A. N. Malik, “Hyperglycemia induces elevated expression of thyroid hormone binding protein in vivo in kidney and heart and in vitro in mesangial cells,” Biochemical and Biophysical Research Communications, vol. 391, no. 4, pp. 1585–1591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. N. Malik and G. Al-Kafaji, “Glucose regulation of β-defensin-1 mRNA in human renal cells,” Biochemical and Biophysical Research Communications, vol. 353, no. 2, pp. 318–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. A. Kowluru and S. N. Abbas, “Diabetes-induced mitochondrial dysfunction in the retina,” Investigative Ophthalmology and Visual Science, vol. 44, no. 12, pp. 5327–5334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annual Review of Genetics, vol. 39, pp. 359–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. H.-C. Lee, P.-H. Yin, C.-Y. Lu, C.-W. Chi, and Y.-H. Wei, “Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells,” Biochemical Journal, vol. 348, no. 2, pp. 425–432, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. C.-F. Lee, Y.-C. Chen, C.-Y. Liu, and Y.-H. Wei, “Involvement of protein kinase C delta in the alteration of mitochondrial mass in human cells under oxidative stress,” Free Radical Biology and Medicine, vol. 40, no. 12, pp. 2136–2146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Munusamy, R. W. Brock, H. Saba, and L. A. MacMillan-Crow, “Role of manganese superoxide dismutase inactivation in the early stages of diabetic nephropathy,” The FASEB Journal, vol. 20, supplement, article A1139, 2006.
  29. P. A. Craven, S. L. Phillips, M. F. Melhem, J. Liachenko, and F. R. DeRubertis, “Overexpression of manganese superoxide dismutase suppresses increases in collagen accumulation induced by culture of mesangial cells in high-media glucose,” Metabolism, vol. 50, no. 9, pp. 1043–1048, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Xie, X. Zhu, Y. Hu et al., “Mitochondrial DNA oxidative damage triggering mitochondrial dysfunction and apoptosis in high glucose-induced HRECs,” Investigative Ophthalmology and Visual Science, vol. 49, no. 9, pp. 4203–4209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. A. Madsen-Bouterse, Q. Zhong, G. Mohammad, Y.-S. Ho, and R. A. Kowluru, “Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase,” Free Radical Research, vol. 44, no. 3, pp. 313–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Kakimoto, T. Inoguchi, T. Sonta et al., “Accumulation of 8-hydroxy-2′-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats,” Diabetes, vol. 51, no. 5, pp. 1588–1595, 2002. View at Scopus