About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 756209, 8 pages
http://dx.doi.org/10.1155/2013/756209
Clinical Study

Frequency and Characteristics of Infections Caused by Extended-Spectrum Beta-Lactamase-Producing Organisms in Neonates: A Prospective Cohort Study

1Department of Paediatrics & Neonatology, PGIMER & Associated Dr. Ram Manohar Lohia Hospital, Baba Kharag Singh Marg, New Delhi 110001, India
2Department of Microbilogy, PGIMER & Associated Dr. Ram Manohar Lohia Hospital, Baba Kharag Singh Marg, New Delhi 110001, India

Received 16 April 2013; Revised 26 July 2013; Accepted 12 August 2013

Academic Editor: Kurt G. Naber

Copyright © 2013 Nandini Vijayakanthi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Chaudhary and R. Aggarwal, “Extended spectrum β-lactamases (ESBL)—an emerging threat to clinical therapeutics,” Indian Journal of Medical Microbiology, vol. 22, no. 2, pp. 75–80, 2004. View at Scopus
  2. A. Ayyagari and A. Bhargava, “b-lactamases and their clinical significance (A mini review),” Hospital Today, vol. 6, no. 10, pp. 1–6, 2001.
  3. S. Nathisuwan, D. S. Burgess, and J. S. Lewis II, “Extended-spectrum β-lactamases: epidemiology, detection, and treatment,” Pharmacotherapy, vol. 21, no. 8, pp. 920–928, 2001. View at Scopus
  4. J. Ena, F. Arjona, C. Martínez-Peinado, M. del mar López-Perezagua, and C. Amador, “Epidemiology of urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli,” Urology, vol. 68, no. 6, pp. 1169–1174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Kaftandzhieva, V. Kotevska, G. Jankoska, B. Kjurcik-Trajkovska, Z. Cekovska, and M. Petrovska, “Extended-spectrum beta-lactamase-producing E. Coli and Klebsiella Pneumoniae in children at University Pediatric Clinic in Skopje,” Macedonian Journal of Medical Sciences, vol. 2, no. 1, pp. 36–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Blomberg, R. Jureen, K. P. Manji et al., “High rate of fatal cases of pediatric septicemia caused by gram-negative bacteria with extended-spectrum beta-lactamases in Dar es Salaam, Tanzania,” Journal of Clinical Microbiology, vol. 43, no. 2, pp. 745–749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. H. Talbot, J. Bradley, J. E. Edwards Jr., D. Gilbert, M. Scheid, and J. G. Bartlett, “Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America,” Clinical Infectious Diseases, vol. 42, no. 5, pp. 657–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. Pitout and K. B. Laupland, “Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern,” The Lancet Infectious Diseases, vol. 8, no. 3, pp. 159–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. W. Goldstein, “Antibiotic susceptibility of bacterial strains isolated from patients with community-acquired urinary tract infections in France,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 19, no. 2, pp. 112–117, 2000. View at Scopus
  10. J. Rodríguez-Baño, M. D. Navarro, L. Romero et al., “Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients,” Journal of Clinical Microbiology, vol. 42, no. 3, pp. 1089–1094, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Colodner, W. Rock, B. Chazan et al., “Risk factors for the development of extended-spectrum beta-lactamase-producing bacteria in nonhospitalized patients,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 23, no. 3, pp. 163–167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Singh, A. Narang, and O. N. Bhakoo, “Predictive perinatal score in the diagnosis of neonatal sepsis,” Journal of Tropical Pediatrics, vol. 40, no. 6, pp. 365–368, 1994. View at Scopus
  13. V. P. Takkar, O. N. Bhakoo, and A. Narang, “Scoring system for the prediction of early neonatal infections,” Indian Pediatrics, vol. 11, no. 9, pp. 597–600, 1974. View at Scopus
  14. M. J. Sankar, R. Agarwal, A. K. Deorari, and V. K. Paul, “Sepsis in the newborn,” Indian Journal of Pediatrics, vol. 75, no. 3, pp. 261–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Polinski, “The value of the white blood cell count and differential in the prediction of neonatal sepsis,” Neonatal Network, vol. 15, no. 7, pp. 13–23, 1996. View at Scopus
  16. O. Da Silva, A. Ohlsson, and C. Kenyon, “Accuracy of leukocyte indices and C-reactive protein for diagnosis of neonatal sepsis: a critical review,” Pediatric Infectious Disease Journal, vol. 14, no. 5, pp. 362–366, 1995. View at Scopus
  17. H. S. Sader, R. N. Jones, A. C. Gales et al., “Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: analysis of results from the SENTRY Antimicrobial Surveillance Program (1997),” Diagnostic Microbiology and Infectious Disease, vol. 32, no. 4, pp. 289–301, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Bell, J. D. Turnidge, A. C. Gales, M. A. Pfaller, and R. N. Jones, “Prevalence of extended spectrum β-lactamase (ESBL)-producing clinical isolates in the Asia-Pacific region and South Africa: regional results from SENTRY Antimicrobial Surveillance Program (1998-99),” Diagnostic Microbiology and Infectious Disease, vol. 42, no. 3, pp. 193–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. N. H. Ryoo, E.-C. Kim, S. G. Hong et al., “Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 4, pp. 698–702, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Jiang, Y. Ni, Y. Jiang et al., “Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China,” Journal of Clinical Microbiology, vol. 43, no. 2, pp. 826–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Hirakata, J. Matsuda, Y. Miyazaki et al., “Regional variation in the prevalence of extended-spectrum β-lactamase-producing clinical isolates in the Asia-Pacific region (SENTRY 1998–2002),” Diagnostic Microbiology and Infectious Disease, vol. 52, no. 4, pp. 323–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Shakil, S. Z. Ali, M. Akram, S. M. Ali, and A. U. Khan, “Risk factors for extended-spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae acquisition in a neonatal intensive care unit,” Journal of Tropical Pediatrics, vol. 56, no. 2, pp. 90–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Agrawal, A. Ghosh, S. Kumar, B. Basu, and K. Kapila, “Prevalence of extended-spectrum β-lactamases among Escherichia coli and Klebsiella pneumoniae isolates in a tertiary care hospital,” Indian Journal of Pathology and Microbiology, vol. 51, no. 1, pp. 139–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. K. Das, K. Basu, P. Chakraborty, and P. K. Bhowmik, “Clinical and bacteriological profile of neonatal infections in metropolitan city based medical college nursery,” Journal of the Indian Medical Association, vol. 97, no. 1, pp. 3–5, 1999. View at Scopus
  25. H. Kapoor, M. Sumathi, P. Aggarwal, S. D. Jain, and J. Kaur, “Spectrum of bacterial isolates in high risk areas of a tertiary care hospital: 3 year study,” Indian Journal of Medical Microbiology, vol. 18, pp. 166–169, 2000.
  26. A. Jain, I. Roy, M. K. Gupta, M. Kumar, and S. K. Agarwal, “Prevalence of extended-spectrum β-lactamase-producing Gram-negative bacteria in septicaemic neonates in a tertiary care hospital,” Journal of Medical Microbiology, vol. 52, no. 5, pp. 421–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. A. Bhutta, “Enterobacter sepsis in the newborn—a growing problem in Karachi,” Journal of Hospital Infection, vol. 34, no. 3, pp. 211–216, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Abdel-Hady, S. Hawas, M. El-Daker, and R. El-Kady, “Extended-spectrum β-lactamase producing Klebsiella pneumoniae in neonatal intensive care unit,” Journal of Perinatology, vol. 28, no. 10, pp. 685–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. V. C. Cassettari, I. R. da Silveira, M. Dropa et al., “Risk factors for colonisation of newborn infants during an outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in an intermediate-risk neonatal unit,” Journal of Hospital Infection, vol. 71, no. 4, pp. 340–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Subha, S. Ananthan, and S. V. Alavandi, “Extended spectrum beta lactamase production & multidrug resistance in Klebsiella species isolated from children under five with intestinal & extraintestinal infections,” Indian Journal of Medical Research, vol. 113, pp. 181–185, 2001. View at Scopus
  31. D. L. Paterson, L. Mulazimoglu, J. M. Casellas et al., “Epidemiology of ciprofloxacin resistance and its relationship, to extended-spectrum β-lactamase production in Klebsiella pneumoniae isolates causing bacteremia,” Clinical Infectious Diseases, vol. 30, no. 3, pp. 473–478, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. P.-R. Hsueh, R. E. Badal, S. P. Hawser et al., “Epidemiology and antimicrobial susceptibility profiles of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region: 2008 results from SMART (Study for Monitoring Antimicrobial Resistance Trends),” International Journal of Antimicrobial Agents, vol. 36, no. 5, pp. 408–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Sehgal, R. Gaind, H. Chellani, and P. Agarwal, “Extended-spectrum β lactamase-producing gram-negative bacteria: clinical profile and outcome in a neonatal intensive care unit,” Annals of Tropical Paediatrics, vol. 27, no. 1, pp. 45–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Zapun, C. Contreras-Martel, and T. Vernet, “Penicillin-binding proteins and β-lactam resistance,” FEMS Microbiology Reviews, vol. 32, no. 2, pp. 361–385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Huang, S. Zhuang, and M. Du, “Risk factors of nosocomial infection with extended-spectrum beta-lactamase-producing bacteria in a neonatal intensive care unit in China,” Infection, vol. 35, no. 5, pp. 339–345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Asensio, A. Oliver, P. González-Diego et al., “Outbreak of a multiresistant Klebsiella pneumoniae strain in an intensive care unit: antibiotic use as risk factor for colonization and infection,” Clinical Infectious Diseases, vol. 30, no. 1, pp. 55–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Bisson, N. O. Fishman, J. B. Patel, P. H. Edelstein, and E. Lautenbach, “Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella species: risk factors for colonization and impact of antimicrobial formulary interventions on colonization prevalence,” Infection Control and Hospital Epidemiology, vol. 23, no. 5, pp. 254–260, 2002. View at Scopus
  38. K. Kristóf, D. Szabó, J. W. Marsh et al., “Extended-spectrum beta-lactamase-producing Klebsiella spp. in a neonatal intensive care unit: risk factors for the infection and the dynamics of the molecular epidemiology,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 26, no. 8, pp. 563–570, 2007. View at Publisher · View at Google Scholar · View at Scopus