About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 757126, 10 pages
http://dx.doi.org/10.1155/2013/757126
Research Article

Hepatoprotective and Antioxidant Effects of Saponarin, Isolated from Gypsophila trichotoma Wend. on Paracetamol-Induced Liver Damage in Rats

1Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, 2 Dunav Street, 1000 Sofia, Bulgaria
2CFSAN, US FDA, 5100 Paint Branch, Parkway College Park, MD 20740, USA
3Department of Pharmacognosy, Faculty of Pharmacy, Medical University, 2 Dunav Street, 1000 Sofia, Bulgaria
4Department of Obstetrics, Gynecology, Biotechnology of Reproduction, Pathological Anatomy and Biochemistry, Faculty of Veterinary Medicine, University of Forestry, 10 Kliment Ohridski Boulevard, 1756 Sofia, Bulgaria

Received 20 April 2013; Revised 4 June 2013; Accepted 4 June 2013

Academic Editor: Bernd Schnabl

Copyright © 2013 Rumyana Simeonova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Sehrawat, T. H. Khan, L. Prasad, and S. Sultana, “Butea monosperma and chemomodulation: protective role against thioacetamide-mediated hepatic alterations in Wistar rats,” Phytomedicine, vol. 13, no. 3, pp. 157–163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. G. Rajesh and M. S. Latha, “Preliminary evaluation of the antihepatotoxic activity of Kamilari, a polyherbal formulation,” Journal of Ethnopharmacology, vol. 91, no. 1, pp. 99–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Cos, L. Ying, M. Calomme et al., “Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers,” Journal of Natural Products, vol. 61, no. 1, pp. 71–76, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Yotova, I. Krasteva, and S. Nikolov, “Saponins: properties, applications and health benefits,” in Triterpenoid Saponins from Genus Gypsophila L., (Caryophyllaceae), R. Koh and I. Tay, Eds., pp. 99–122, Nova Publishers, New York, NY, USA, 2012.
  5. S. Valev, Flora Republicae Popularis Bulgaricae, Aedibus Academiae Scientiarum Bulgaricae, Sofia, Bulgaria, 3rd edition, 1966.
  6. I. N. Krasteva, I. S. Popov, V. I. Balabanova, S. D. Nikolov, and I. P. Pencheva, “Phytochemical study of Gypsophila trichotoma Wend. (Caryophyllaceae),” Quimica Nova, vol. 31, no. 5, pp. 1125–1126, 2008. View at Scopus
  7. I. N. Krasteva, K. Jenett-Siems, M. Kaloga, and S. Nikolov, “3-O-sulfo-triterpenoid saponins from Gypsophila trichotoma Wend,” Zeitschrift fur Naturforschung B, vol. 64, no. 3, pp. 319–322, 2009. View at Scopus
  8. I. N. Krasteva, M. Yotova, I. Popov, P. Zdraveva, and S. Nikolov, “Phytochemical study of leaves and roots of Gypsophila trichotoma Wend. using gas chromatography—mass spectrometry,” Pharmacia, vol. 56, no. 1–4, pp. 3–6, 2009. View at Scopus
  9. M. Yotova, I. N. Krasteva, K. Jenett-Siems, P. Zdraveva, and S. Nikolov, “Secondary metabolites in Gypsophila trichotoma Wend,” Pharmacognosy Magazine, vol. 22, supplement, p. 159, 2010.
  10. S. Sengupta, A. Mukherjee, R. Goswami, and S. Basu, “Hypoglycemic activity of the antioxidant saponarin, characterized as α-glucosidase inhibitor present in Tinospora cordifolia,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, no. 3, pp. 684–690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Basile, S. Giordano, J. A. López-Sáez, and R. C. Cobianchi, “Antibacterial activity of pure flavonoids isolated from mosses,” Phytochemistry, vol. 52, no. 8, pp. 1479–1482, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. V. B. Vitcheva, R. L. Simeonova, I. N. Krasteva, M. Yotova, S. Nikolov, and M. Mitcheva, “Hepatoprotective effects of saponarin, isolated from Gypsophila trichotoma Wend. on cocaine-induced oxidative stress in rats,” Redox Report, vol. 16, no. 2, pp. 56–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. C. Pradhan and C. Girish, “Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine,” Indian Journal of Medical Research, vol. 124, pp. 491–504, 2006. View at Scopus
  14. M. J. Tuñón, M. Alvarez, J. M. Culebras, and J. González-Gallego, “An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure,” World Journal of Gastroenterology, vol. 15, no. 25, pp. 3086–3098, 2009. View at Publisher · View at Google Scholar
  15. J. R. Mitchell, D. J. Jollow, W. Z. Potter, et al., “Acetaminophen induced hepatic necrosis. I. Role of drug metabolism,” Journal of Pharmacology and Experimental Therapeutics, vol. 187, no. 1, pp. 185–194, 1973. View at Scopus
  16. J. G. M. Bessems and N. P. E. Vermeulen, “Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches,” Critical Reviews in Toxicology, vol. 31, no. 1, pp. 55–138, 2001. View at Scopus
  17. T. R. Knight, M. W. Fariss, A. Farhood, and H. Jaeschke, “Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice,” Toxicological Sciences, vol. 76, no. 1, pp. 229–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. Council of Europe, “European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes,” CETS, no. 123, 1991.
  19. D. Fau, A. Berson, D. Eugene, B. Fromenty, C. Fisch, and D. Pessayre, “Mechanism for the hepatotoxicity of the antiandrogen, nilutamide. Evidence suggesting that redox cycling of this nitroaromatic drug leads to oxidative stress in isolated hepatocytes,” Journal of Pharmacology and Experimental Therapeutics, vol. 263, no. 1, pp. 69–77, 1992. View at Scopus
  20. M. Mitcheva, M. Kondeva, V. Vitcheva, P. Nedialkov, and G. Kitanov, “Effect of benzophenones from Hypericum annulatum on carbon tetrachloride-induced toxicity in freshly isolated rat hepatocytes,” Redox Report, vol. 11, no. 1, pp. 3–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. U. Bergmeyer, K. Gawehn, and M. Grass, “Lactate-dehydrogenase, UV-assay with pyruvate and NADH,” in Methods of Enzymatic Analysis, H. U. Bergmeyer, Ed., vol. 1, pp. 481–482, Academic Press, New York, NY, USA, 2nd edition, 1974.
  22. P. V. Habbu, R. A. Shastry, K. M. Mahadevan, H. Joshi, and S. K. Das, “Hepatoprotective and antioxidant effects of Argyreia specioasa in rats,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 5, no. 2, pp. 158–164, 2008. View at Scopus
  23. S. C. Lin, T. C. Chung, C. C. Lin et al., “Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage,” American Journal of Chinese Medicine, vol. 28, no. 2, pp. 163–173, 2000. View at Scopus
  24. A. H. Polizio and C. Peña, “Effects of angiotensin II type 1 receptor blockade on the oxidative stress in spontaneously hypertensive rat tissues,” Regulatory Peptides, vol. 128, no. 1, pp. 1–5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. E. A. Bump, Y. C. Taylor, and J. M. Brown, “Role of glutathione in the hypoxic cell cytotoxicity of misonidazole,” Cancer Research, vol. 43, no. 3, pp. 997–1002, 1983. View at Scopus
  26. F. P. Guengerich, “Principals and methods of toxicology,” in Microsomal Enzymes Involved in Toxicology. Analysis and Separation, A. W. Heis, Ed., pp. 609–634, Raven Press, New York, NY, USA, 1987.
  27. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Scopus
  28. T. Omura and R. Sato, “The carbon-monoxide-binding pigment of liver microsomes,” The Journal of Biological Chemistry, vol. 239, pp. 2370–2385, 1964. View at Scopus
  29. L. H. Cohen, R. E. W. van Leeuwen, G. C. F. van Thiel, J. F. van Pelt, and S. H. Yap, “Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 Enzymes,” Biopharmaceutics & Drug Disposition, vol. 21, no. 9, pp. 353–364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Aebi, “Methods of enzymatic analysis,” in Catalase, H. U. Bergrenyer, Ed., pp. 673–684, Academic Press, New York, NY, USA, 2nd edition, 1974.
  31. H. P. Misra and I. Fridovich, “The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase,” The Journal of Biological Chemistry, vol. 247, no. 10, pp. 3170–3175, 1972. View at Scopus
  32. A. L. Tappel, “Glutathione peroxidase and hydroperoxides,” Methods in Enzymology, vol. 52, pp. 506–513, 1978. View at Publisher · View at Google Scholar · View at Scopus
  33. M. C. Pinto, A. M. Mata, and J. Lopez-Barea, “Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions,” Archives of Biochemistry and Biophysics, vol. 228, no. 1, pp. 1–12, 1984. View at Scopus
  34. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation,” The Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Scopus
  35. J. D. Bancroft and M. Gamble, Theory and Practice of Histological Techniques, Churchill Livingstone Publications, Edinburgh, UK, 2002.
  36. N. Kaplowitz, “Drug-induced liver disorders: implications for drug development and regulation,” Drug Safety, vol. 24, no. 7, pp. 483–490, 2001. View at Scopus
  37. A. B. Reid, R. C. Kurten, S. S. McCullough, R. W. Brock, and J. A. Hinson, “Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes,” Journal of Pharmacology and Experimental Therapeutics, vol. 312, no. 2, pp. 509–516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Muriel, T. Garciapina, V. Perez-Alvarez, and M. Mourelle, “Silymarin protects against paracetamol-induced lipid peroxidation and liver damage,” Journal of Applied Toxicology, vol. 12, no. 6, pp. 439–442, 1992. View at Publisher · View at Google Scholar · View at Scopus
  39. S. C. Udem, I. I. Madubunyy, J. O. A. Okoye, and S. M. Anika, “Anti-hepatotoxic effects of the ethanolic extracts of Combretum dolichopetalum root bark and Morinda lucida leaf,” Fitoterapia, vol. 68, no. 1, pp. 21–26, 1997. View at Scopus
  40. J. L. Raucy, “Regulation of CYP3A4 expression in human hepatocytes by pharmaceuticals and natural products,” Drug Metabolism and Disposition, vol. 31, no. 5, pp. 533–539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Kumarappan, M. Vijayakumar, E. Thilagam et al., “Protective and curative effects of polyphenolic extracts from Ichnocarpus frutescense leaves on experimental hepatotoxicity by carbon tretrachloride and tamoxifen,” Annals of Hepatology, vol. 10, no. 1, pp. 63–72, 2011. View at Scopus
  42. C. Cheung, A. M. Yu, J. M. Ward et al., “The CYP2E1-humanized transgenic mouse: role of CYP2E1 in acetaminophen hepatotoxicity,” Drug Metabolism and Disposition, vol. 33, no. 3, pp. 449–457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Timbrell, “Principles of Biochemical Toxicology,” in Factors Affecting Metabolism and Disposition—Toxic Responses to Foreign Compounds—Direct Toxic Action: Tissue Lesions, J. Timbrell, Ed., pp. 176–211, Taylor and Francis, London, UK, 3rd edition, 2000.
  44. B. J. Roberts, S. E. Shoaf, and B. J. Song, “Rapid changes in cytochrome P4502E1 (CYP2E1) activity and other P450 isozymes following ethanol withdrawal in rats,” Biochemical Pharmacology, vol. 49, no. 11, pp. 1665–1673, 1995. View at Publisher · View at Google Scholar · View at Scopus
  45. D. E. Amacher and S. J. Schomaker, “Ethylmorphine N-demethylase activity as a marker for cytochrome P450 CYP3A activity in rat hepatic microsomes,” Toxicology Letters, vol. 94, no. 2, pp. 115–125, 1998. View at Publisher · View at Google Scholar · View at Scopus