About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 758731, 11 pages
http://dx.doi.org/10.1155/2013/758731
Research Article

An Investigation of Vocal Tract Characteristics for Acoustic Discrimination of Pathological Voices

1Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
2Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139, USA
3Department of Otorhinolaryngology—Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 137–710, Republic of Korea

Received 16 July 2013; Revised 17 September 2013; Accepted 17 September 2013

Academic Editor: Tosiaki Miyati

Copyright © 2013 Jung-Won Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Carding, E. Carlson, R. Epstein, L. Mathieson, and C. Shewell, “Formal perceptual evaluation of voice quality in the United Kingdom,” Logopedics Phoniatrics Vocology, vol. 25, no. 3, pp. 133–138, 2000. View at Scopus
  2. P. Yu, M. Ouaknine, J. Revis, and A. Giovanni, “Objective voice analysis for dysphonic patients: a multiparametric protocol including acoustic and aerodynamic measurements,” Journal of Voice, vol. 15, no. 4, pp. 529–542, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Parsa and D. G. Jamieson, “Acoustic discrimination of pathological voice: sustained vowels versus continuous speech,” Journal of Speech, Language, and Hearing Research, vol. 44, no. 2, pp. 327–339, 2001. View at Scopus
  4. V. Parsa and D. G. Jamieson, “Identification of pathological voices using glottal noise measures,” Journal of Speech, Language, and Hearing Research, vol. 43, no. 2, pp. 469–485, 2000. View at Scopus
  5. G. de Krom, “A cepstrum-based technique for determining a harmonics-to-noise ratio in speech signals,” Journal of Speech and Hearing Research, vol. 36, no. 2, pp. 254–266, 1993. View at Scopus
  6. Y. Maryn, P. Corthals, P. van Cauwenberge, N. Roy, and M. de Bodt, “Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels,” Journal of Voice, vol. 24, no. 5, pp. 540–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Bettens, F. Grenez, and J. Schoentgen, “Estimation of vocal dysperiodicities in disordered connected speech by means of distant-sample bidirectional linear predictive analysis,” Journal of the Acoustical Society of America, vol. 117, no. 1, pp. 328–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kacha, F. Grenez, and J. Schoentgen, “Estimation of dysperiodicities in disordered speech,” Speech Communication, vol. 48, no. 10, pp. 1365–1378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Dibazar, S. Narayanan, and T. W. Berger, “Feature analysis for automatic detection of pathological speech,” in Proceedings of the 2nd Joint Engineering in Medicine and Biology, 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society (BMES/EMBS), vol. 1, pp. 182–183, Houston, Tex, USA, October 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. I. Godino-Llorente and P. Gómez-Vilda, “Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 2, pp. 380–384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Fredouille, G. Pouchoulin, J.-F. Bonastre, M. Azzarello, A. Giovanni, and A. Ghio, “Application of automatic speaker recognition techniques to pathological voice assessment (dysphonia),” in Proceedings of the 9th European Conference on Speech Communication and Technology (Eurospeech '05), pp. 149–152, Lisbon, Portugal, September 2005. View at Scopus
  12. D. O'Shaughnessy, “Interacting with computers by voice: automatic speech recognition and synthesis,” Proceedings of the IEEE, vol. 91, no. 9, pp. 1272–1305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Kay Elemetrics, “Multi-dimensional voice program (mdvp) [computer program],” Tech. Rep., 2008.
  14. R. D. Kent and C. Read, The Acoustic Analysis of Speech, Singular Publishing Group, San Diego, Calif, USA, 2002.
  15. M. Frohlich, D. Michaelis, and H. W. Srube, “Acoustic “Breathiness Measures” in the description of pathologic voices,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), vol. 8, pp. 937–940, Seattle, Wash, USA, 1998.
  16. G. Muhammad, M. Alsulaiman, A. Mahmood, and Z. Ali, “Automatic voice disorder classification using vowel formants,” in Proceedings of the 12th IEEE International Conference on Multimedia and Expo (ICME '11), pp. 1–6, Barcelona, Spain, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. T. F. Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice, Prentice-Hall, Englewood Cliffs, NJ, USA, 2005.
  18. J. Jiang, J. Stern, H.-J. Chen, and N. P. Solomon, “Vocal efficiency measurements in subjects with vocal polyps and nodules: a preliminary report,” The Annals of Otology, Rhinology and Laryngology, vol. 113, no. 4, pp. 277–282, 2004. View at Scopus
  19. O. Kleinsasser, “Pathogenesis of vocal cord polyps,” The Annals of Otology, Rhinology and Laryngology, vol. 91, no. 4, part 1, pp. 378–381, 1982. View at Scopus
  20. R. Patel and K. S. Parsram, “Acoustic analysis of subjects with vocal cord paralysis,” Indian Journal of Otolaryngology and Head and Neck Surgery, vol. 57, no. 1, pp. 48–51, 2005. View at Scopus
  21. W. T. Fitch and J. Giedd, “Morphology and development of the human vocal tract: a study using magnetic resonance imaging,” Journal of the Acoustical Society of America, vol. 106, no. 3, pp. 1511–1522, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Fukazawa, A. el-Assuooty, and I. Honjo, “A new index for evaluation of the turbulent noise in pathological voice,” Journal of the Acoustical Society of America, vol. 83, no. 3, pp. 1189–1193, 1988. View at Scopus
  23. D. H. Klatt and L. C. Klatt, “Analysis, synthesis, and perception of voice quality variations among female and male talkers,” Journal of the Acoustical Society of America, vol. 87, no. 2, pp. 820–857, 1990. View at Scopus
  24. K. N. Stevens, Acoustic Phonetics, The MIT Press, Cambridge, Mass, USA, 1998.
  25. J.-Y. Choi, M. Hasegawa-Johnson, and J. Cole, “Finding intonational boundaries using acoustic cues related to the voice source,” Journal of the Acoustical Society of America, vol. 118, no. 4, pp. 2579–2587, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. K. Paliwal and B. S. Atal, “Efficient vector quantization of LPC parameters at 24 bits/frame,” IEEE Transactions on Speech and Audio Processing, vol. 1, pp. 3–14, 1993.
  27. S. Young, S. Evermann, M. Gales, et al., The HTK Book. Version 3.4 Manual, Cambridge University Press, 2006.
  28. D. Deliyski, “Investigation of the autocorrelation function characteristics in pathologic voice signal analysis,” in Proceedings of the 3rd Internal Conference on Statistical Theory of Communications (STS '88), vol. 17, 1988.
  29. P. Boersma and D. Weenink, “Praat: doing phonetics by computer,” [Computer program], 5. 3. 04 ed. 2012, http://www.praat.org/.
  30. R. O. Duda, P. E. Hart, and D. G. Stock, Pattern Classification, Wiley Interscience, New York, NY, USA, 2000.
  31. A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The DET curve in assessment of detection task performance,” in Proceedings of the 5th European Conference on Speech Communication and Technology (Eurospeech '97), pp. 1895–1898, Rhodes, Greece, September 1997.
  32. A. E. Aronson, Clinical Voice Disorders, Thieme, New York, NY, USA, 3rd edition, 1990.
  33. A. J. Lotto, L. L. Holt, and K. R. Kluender, “Effect of voice quality on perceived height of English vowels,” Phonetica, vol. 54, no. 2, pp. 76–93, 1997. View at Scopus
  34. K. Denning, The diachronic development of phonological voice quality, with special reference to Dinka and the other Nilotic languages [PhD Dissertation], Stanford University, 1989.
  35. I. R. Titze and B. H. Story, “Acoustic interactions of the voice source with the lower vocal tract,” Journal of the Acoustical Society of America, vol. 101, no. 4, pp. 2234–2243, 1997. View at Publisher · View at Google Scholar · View at Scopus