About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 759057, 11 pages
http://dx.doi.org/10.1155/2013/759057
Research Article

Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes

1Department of Digestive, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
2Department of Radiology and Bio-X Program, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, 1201 Welch Road, Lucas Center, P095, Stanford University, Stanford, CA 94305, USA
3Department of Surgery, Asian Liver Center, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA

Received 12 March 2013; Accepted 22 March 2013

Academic Editor: Hong Zhang

Copyright © 2013 Ping Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Llovet, A. Burroughs, and J. Bruix, “Hepatocellular carcinoma,” The Lancet, vol. 362, no. 9399, pp. 1907–1917, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Okuda, “Hepatocellular carcinoma,” Journal of Hepatology, vol. 32, no. 1, pp. 225–237, 2000. View at Scopus
  3. D. M. Parkin, P. Pisani, and J. Ferlay, “Global cancer statistics,” Ca: A Cancer Journal for Clinicians, vol. 49, no. 1, pp. 33–64, 1999. View at Scopus
  4. J. Bruix and M. Sherman, “Management of hepatocellular carcinoma,” Hepatology, vol. 42, no. 5, pp. 1208–1236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Capurro, I. R. Wanless, M. Sherman et al., “Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma,” Gastroenterology, vol. 125, no. 1, pp. 89–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. N. N. Massarweh, J. O. Park, F. Farjah et al., “Trends in the utilization and impact of radiofrequency ablation for hepatocellular carcinoma,” Journal of the American College of Surgeons, vol. 210, no. 4, pp. 441–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Khan, C. S. Combs, E. M. Brunt et al., “Positron emission tomography scanning in the evaluation of hepatocellular carcinoma,” Journal of Hepatology, vol. 32, no. 5, pp. 792–797, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Park, H. K. Ji, K. K. Seok et al., “A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma,” Journal of Nuclear Medicine, vol. 49, no. 12, pp. 1912–1921, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Yun, S. H. Bang, W. K. Jae, Y. P. Jun, S. K. Kyoung, and D. L. Jong, “The importance of acetyl coenzyme A synthetase for 11C-acetate uptake and cell survival in hepatocellular carcinoma,” Journal of Nuclear Medicine, vol. 50, no. 8, pp. 1222–1228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Yoshimoto, A. Waki, Y. Yonekura et al., “Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells,” Nuclear Medicine and Biology, vol. 28, no. 2, pp. 117–122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Daveau, M. Scotte, A. François et al., “Hepatocyte growth factor, transforming growth factor α, and their receptors as combined markers of prognosis in hepatocellular carcinoma,” Molecular Carcinogenesis, vol. 36, no. 3, pp. 130–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Jiang, H. Wang, Z. Tan et al., “Growth suppression of human hepatocellular carcinoma xenografts by a monoclonal antibody CH12 directed to epidermal growth factor receptor variant III,” Journal of Biological Chemistry, vol. 286, no. 7, pp. 5913–5920, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. de Bruin, N. Ruthardt, K. von Gersdorff et al., “Cellular dynamics of EGF receptor-targeted synthetic viruses,” Molecular Therapy, vol. 15, no. 7, pp. 1297–1305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. S. Herbst, “Review of epidermal growth factor receptor biology,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 2, pp. 21–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Lupberger, M. B. Zeisel, F. Xiao et al., “EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy,” Nature Medicine, vol. 17, no. 5, pp. 589–595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. Schneider and E. Wolf, “The epidermal growth factor receptor ligands at a glance,” Journal of Cellular Physiology, vol. 218, no. 3, pp. 460–466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Mendelsohn and J. Baselga, “Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer,” Journal of Clinical Oncology, vol. 21, no. 14, pp. 2787–2799, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Schlessinger, “Cell signaling by receptor tyrosine kinases,” Cell, vol. 103, no. 2, pp. 211–225, 2000. View at Scopus
  19. F. X. Real, W. J. Rettig, and P. G. Chesa, “Expression of epidermal growth factor receptor in human cultured cells and tissues: relationship to cell lineage and stage of differentiation,” Cancer Research, vol. 46, no. 9, pp. 4726–4731, 1986. View at Scopus
  20. A. F. Buckley, L. J. Burgart, V. Sahai, and S. Kakar, “Epidermal growth factor receptor expression and gene copy number in conventional hepatocellular carcinoma,” American Journal of Clinical Pathology, vol. 129, no. 2, pp. 245–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. A. DeCicco, J. Kong, and D. P. Ringer, “Carcinogen-induced alteration in liver epidermal growth factor receptor distribution during the promotion stage of hepatocarcinogenesis in rat,” Cancer Letters, vol. 111, no. 1-2, pp. 149–156, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Kira, T. Nakanishi, S. Suemori, M. Kitamoto, Y. Watanabe, and G. Kajiyama, “Expression of transforming growth factor alpha and epidermal growth factor receptor in human hepatocellular carcinoma,” Liver, vol. 17, no. 4, pp. 177–182, 1997. View at Scopus
  23. E. Schiffer, C. Housset, W. Cacheux et al., “Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis,” Hepatology, vol. 41, no. 2, pp. 307–314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Friedman, E. Nordberg, I. Höidén-Guthenberg et al., “Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor,” Protein Engineering, Design and Selection, vol. 20, no. 4, pp. 189–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Gao, K. Chen, Z. Miao et al., “Affibody-based nanoprobes for HER2-expressing cell and tumor imaging,” Biomaterials, vol. 32, no. 8, pp. 2141–2148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Hoppmann, Z. Miao, S. Liu et al., “Radiolabeled affibody-albumin bioconjugates for HER2-positive cancer targeting,” Bioconjugate Chemistry, vol. 22, no. 3, pp. 413–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Miao, G. Ren, H. Liu, S. Qi, S. Wu, and Z. Cheng, “PET of EGFR expression with an 18F-labeled affibody molecule,” Journal of Nuclear Medicine, vol. 53, no. 7, pp. 1110–1118, 2012. View at Publisher · View at Google Scholar
  28. S. Qi, Z. Miao, H. Liu, Y. Xu, Y. Feng, and Z. Cheng, “Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors,” Bioconjugate Chemistry, vol. 23, no. 6, pp. 1149–1156, 2012. View at Publisher · View at Google Scholar
  29. M. Yang, K. Cheng, S. Qi, et al., “Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging,” Biomaterials, vol. 34, no. 11, pp. 2796–2806, 2013. View at Publisher · View at Google Scholar
  30. K. Nord, E. Gunneriusson, J. Ringdahl, S. Stahl, M. Uhlén, and P. A. Nygren, “Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain,” Nature Biotechnology, vol. 15, no. 8, pp. 772–777, 1997. View at Scopus
  31. M. Friedman, A. Orlova, E. Johansson et al., “Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule,” Journal of Molecular Biology, vol. 376, no. 5, pp. 1388–1402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Miao, J. Levi, and Z. Cheng, “Protein scaffold-based molecular probes for cancer molecular imaging,” Amino Acids, vol. 41, no. 5, pp. 1037–1047, 2011. View at Publisher · View at Google Scholar
  33. Z. Cheng, O. P. De Jesus, M. Namavari et al., “Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules,” Journal of Nuclear Medicine, vol. 49, no. 5, pp. 804–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Sogawa, A. B. Tsuji, C. Yoshida, et al., “Novel human monoclonal antibody against epidermal growth factor receptor as an imaging probe for hepatocellular carcinoma,” Nuclear Medicine Communications, vol. 33, no. 7, pp. 719–725, 2012. View at Publisher · View at Google Scholar
  35. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, “Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review,” Journal of Controlled Release, vol. 65, no. 1-2, pp. 271–284, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Tolmachev, A. Orlova, R. Pehrson et al., “Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific affibody molecule,” Cancer Research, vol. 67, no. 6, pp. 2773–2782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Orlova, J. Feldwisch, L. Abrahmsén, and V. Tolmachev, “Update: affibody molecules for molecular imaging and therapy for cancer,” Cancer Biotherapy and Radiopharmaceuticals, vol. 22, no. 5, pp. 573–584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Miao, G. Ren, H. Liu, L. Jiang, and Z. Cheng, “Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled affibody protein,” Bioconjugate Chemistry, vol. 21, no. 5, pp. 947–954, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. W. B. Nagengast, E. G. De Vries, G. A. Hospers et al., “In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft,” Journal of Nuclear Medicine, vol. 48, no. 8, pp. 1313–1319, 2007. View at Publisher · View at Google Scholar · View at Scopus