About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 759657, 8 pages
http://dx.doi.org/10.1155/2013/759657
Research Article

Characterization of the Newly Developed Soybean Cultivar DT2008 in Relation to the Model Variety W82 Reveals a New Genetic Resource for Comparative and Functional Genomics for Improved Drought Tolerance

1Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
2National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham Van Dong Street, Hanoi, Vietnam
3Post-Graduate Program, Vietnamese Academy of Agricultural Science, Thanhtri, Hanoi, Vietnam

Received 5 September 2012; Accepted 20 October 2012

Academic Editor: Ji-Hong Liu

Copyright © 2013 Chien Van Ha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. P. Manavalan, S. K. Guttikonda, L. S. Phan Tran, and H. T. Nguyen, “Physiological and molecular approaches to improve drought resistance in soybean,” Plant and Cell Physiology, vol. 50, no. 7, pp. 1260–1276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Neelakandan, H. T. M. Nguyen, R. Kumar et al., “Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis,” Plant Molecular Biology, vol. 74, no. 4, pp. 503–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. P. Choudhary and L. S. Tran, “Phytosterols: perspectives in human nutrition and clinical therapy,” Current Medicinal Chemistry, vol. 18, pp. 4557–4567, 2011.
  4. R. Kumar, L. S. Tran, A. K. Neelakandan, and H. T. Nguyen, “Higher plant cytochrome b5 polypeptides modulate fatty acid desaturation,” PLoS ONE, vol. 7, Article ID e31370, 2012.
  5. J. Hill, E. Nelson, D. Tilman, S. Polasky, and D. Tiffany, “Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11206–11210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Q. Vinh, P. T. B. Chung, N. V. Manh, and L. T. A. Hong, “Results of research, creation, drought-tolerant soybean variety, DT2008,” Journal of Vietnamese Agricultural Science and Technology, vol. 6, pp. 46–50, 2010.
  7. L. S. P. Tran and K. Mochida, “Functional genomics of soybean for improvement of productivity in adverse conditions,” Functional and Integrative Genomics, vol. 10, no. 4, pp. 447–462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. S. P. Tran, K. Nakashima, Y. Sakuma et al., “Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis,” Plant Journal, vol. 49, no. 1, pp. 46–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. S. Tran, R. Nishiyama, K. Yamaguchi-Shinozaki, and K. Shinozaki, “Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach,” GM Crops, vol. 1, pp. 32–39, 2010.
  10. S. Ha, R. Vankova, K. Yamaguchi-Shinozaki, K. Shinozaki, and L. S. Tran, “Cytokinins: metabolism and function in plant adaptation to environmental stresses,” Trends in Plant Science, vol. 17, pp. 172–179, 2012.
  11. K. Mochida, T. Yoshida, T. Sakurai, K. Yamaguchi-Shinozaki, K. Shinozaki, and L. S. P. Tran, “Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean,” DNA Research, vol. 17, no. 5, pp. 303–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Hadiarto and L. S. P. Tran, “Progress studies of drought-responsive genes in rice,” Plant Cell Reports, vol. 30, no. 3, pp. 297–310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. N. P. Thao and L. S. Tran, “Potentials toward genetic engineering of drought-tolerant soybean,” Critical Reviews in Biotechnology, vol. 32, no. 4, pp. 349–362, 2012. View at Publisher · View at Google Scholar
  14. S. Jogaiah, S. Ramsandra Govind, and L. S. Tran, “System biology-based approaches towards understanding drought tolerance in food crops,” Critical Reviews in Biotechnology. In press. View at Publisher · View at Google Scholar
  15. D. T. Le, R. Nishiyama, Y. Watanabe, K. Mochida, K. Yamaguchi-Shinozaki, et al., “Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress,” DNA Research, vol. 18, pp. 263–276, 2011.
  16. Y. Ma, F. Qin, and L. S. Tran, “Contribution of genomics to gene discovery in plant abiotic stress responses,” Molecular Plant. In press. View at Publisher · View at Google Scholar
  17. S. Sulieman and L. S. Tran, “Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes,” Critical Reviews in Biotechnology. In press.
  18. M. Nuruzzaman, R. Manimekalai, A. M. Sharoni et al., “Genome-wide analysis of NAC transcription factor family in rice,” Gene, vol. 465, no. 1-2, pp. 30–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. T. Le, J. D. Choi, and L. S. Tran, “Amino acids conferring herbicide resistance in tobacco acetohydroxyacid synthase,” GM Crops, vol. 1, pp. 62–67, 2010.
  20. D. T. Le, R. Nishiyama, Y. Watanabe et al., “Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress,” DNA Research, vol. 18, no. 1, pp. 17–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. T. Le, R. Nishiyama, Y. Watanabe, M. Tanaka, M. Seki, et al., “Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis,” PLoS ONE. In press.
  22. D. T. Le, D. L. Aldrich, B. Valliyodan, Y. Watanabe, C. V. Ha, et al., “Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions,” PLoS ONE, vol. 7, Article ID e46487, 2012.
  23. D. T. Le, R. Nishiyama, Y. Watanabe, R. Vankova, M. Tanaka, et al., “Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels,” PLoS ONE, vol. 7, Article ID e42411, 2012.
  24. J. Schmutz, S. B. Cannon, J. Schlueter et al., “Genome sequence of the palaeopolyploid soybean,” Nature, vol. 463, no. 7278, pp. 178–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Maruyama, D. Todaka, J. Mizoi, T. Yoshida, S. Kidokoro, et al., “Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean,” DNA Research, vol. 19, pp. 37–49, 2012.
  26. P. P. Mohammadi, A. Moieni, S. Hiraga, and S. Komatsu, “Organ-specific proteomic analysis of drought-stressed soybean seedlings,” Journal of Proteomics, vol. 75, pp. 1906–1923, 2012.
  27. S. Silvente, A. P. Sobolev, and M. Lara, “Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress,” PLoS ONE, vol. 7, Article ID e38554, 2012.
  28. R. Nishiyama, Y. Watanabe, Y. Fujita et al., “Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis,” Plant Cell, vol. 23, no. 6, pp. 2169–2183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. M. Whitest and F. E. A. Wilson, “Responses of grain yield, biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties,” Irish Journal of Agricultural and Food Research, vol. 45, no. 1, pp. 85–101, 2006. View at Scopus
  30. S. B. Preuss, R. Meister, Q. Xu, C. P. Urwin, and F. A. Tripodi, “Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield,” PLoS ONE, vol. 7, Article ID e30717, 2012.