About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 760236, 9 pages
http://dx.doi.org/10.1155/2013/760236
Research Article

Heparanase Localization during Palatogenesis in Mice

1Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical College, Takatsuki 569-8686, Japan
2Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
3Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
4Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, Nagoya 464-0821, Japan
5Departments of Material and Life Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
6Laboratory of Biological Chemistry, Department of Biomolecular Chemistry, Kyoto Prefectural University, Kyoto 606-8522, Japan
7Department of Oral Histology, Matsumoto Dental University, Shiojiri 399-0781, Japan

Received 14 November 2012; Accepted 1 January 2013

Academic Editor: Erica L. Scheller

Copyright © 2013 Azumi Hirata et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. W. Ferguson, “Palate development,” Development, vol. 103, supplement, pp. 41S–60S, 1988.
  2. L. Meng, Z. Bian, R. Torensma, and J. W. Von Den Hoff, “Biological mechanisms in palatogenesis and cleft palate,” Journal of Dental Research, vol. 88, no. 1, pp. 22–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Morris-Wiman and L. Brinkley, “Rapid changes in the extracellular matrix accompany in vitro palatal shelf remodelling,” Anatomy and Embryology, vol. 188, no. 1, pp. 75–85, 1993. View at Scopus
  4. J. Morris-Wiman and L. Brinkley, “An extracellular matrix infrastructure provides support for murine secondary palatal shelf remodelling,” Anatomical Record, vol. 234, no. 4, pp. 575–586, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Iamaroon and V. M. Diewert, “Distribution of basement membrane components in the mouse primary palate,” Journal of Craniofacial Genetics and Developmental Biology, vol. 16, no. 1, pp. 48–51, 1996. View at Scopus
  6. M. Dudas, W. Y. Li, J. Kim, A. Yang, and V. Kaartinen, “Palatal fusion—where do the midline cells go?. A review on cleft palate, a major human birth defect,” Acta Histochemica, vol. 109, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Blavier, A. Lazaryev, J. Groffen, N. Heisterkamp, Y. A. DeClerck, and V. Kaartinen, “TGF-β3-induced palatogenesis requires matrix metalloproteinases,” Molecular Biology of the Cell, vol. 12, no. 5, pp. 1457–1466, 2001. View at Scopus
  8. N. L. Brown, S. J. Yarram, J. P. Mansell, and J. R. Sandy, “Matrix metalloproteinases have a role in palatogenesis,” Journal of Dental Research, vol. 81, no. 12, pp. 826–830, 2002. View at Scopus
  9. M. D. Hulett, C. Freeman, B. J. Hamdorf, R. T. Baker, M. J. Harris, and C. R. Parish, “Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis,” Nature Medicine, vol. 5, no. 7, pp. 803–809, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Toyoshima and M. Nakajima, “Human heparanase. Purification, characterization, cloning, and expression,” The Journal of Biological Chemistry, vol. 274, no. 34, pp. 24153–24160, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Vlodavsky, Y. Friedmann, M. Elkin et al., “Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis,” Nature Medicine, vol. 5, no. 7, pp. 793–802, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Kruegel and N. Miosge, “Basement membrane components are key players in specialized extracellular matrices,” Cellular and Molecular Life Sciences, vol. 67, no. 17, pp. 2879–2895, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. McKenzie, K. Tyson, A. Stamps et al., “Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member,” Biochemical and Biophysical Research Communications, vol. 276, no. 3, pp. 1170–1177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Levy-Adam, S. Feld, V. Cohen-Kaplan et al., “Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity,” The Journal of Biological Chemistry, vol. 285, no. 36, pp. 28010–28019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Hirata and H. Nakamura, “Localization of perlecan and heparanase in Hertwig's epithelial root sheath during root formation in mouse molars,” Journal of Histochemistry and Cytochemistry, vol. 54, no. 10, pp. 1105–1113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Q. Miao, E. Navarro, S. Patel et al., “Cloning, expression, and purification of mouse heparanase,” Protein Expression and Purification, vol. 26, no. 3, pp. 425–431, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Nakamura and H. Ozawa, “Immunohistochemical localization of heparan sulfate proteoglycan in rat tibiae,” Journal of Bone and Mineral Research, vol. 9, no. 8, pp. 1289–1299, 1994. View at Scopus
  18. W. J. Grzesik, C. R. Frazier, J. R. Shapiro, P. D. Sponseller, P. Gehron Robey, and N. S. Fedarko, “Age-related changes in human bone proteoglycan structure: impact of osteogenesis imperfecta,” The Journal of Biological Chemistry, vol. 277, no. 46, pp. 43638–43647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Newman, F. Bonello, A. S. Wierzbicki, P. Lumb, G. F. Savidge, and M. J. Shearer, “The uptake of lipoprotein-borne phylloquinone (vitamin K1) by osteoblasts and osteoblast-like cells: role of heparan sulfate proteoglycans and apolipoprotein E,” Journal of Bone and Mineral Research, vol. 17, no. 3, pp. 426–433, 2002. View at Scopus
  20. S. M. Cool and V. Nurcombe, “The osteoblast-heparan sulfate axis: control of the bone cell lineage,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 9, pp. 1739–1745, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Khan, M. S. Nelson, C. Pan, P. M. Gaffney, and P. Gupta, “Endogenous heparan sulfate and heparin modulate bone morphogenetic protein-4 signaling and activity,” American Journal of Physiology, vol. 294, no. 6, pp. C1387–C1397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Saijo, R. Kitazawa, M. Nakajima, M. Kurosaka, S. Maeda, and S. Kitazawa, “Heparanase mRNA expression during fracture repair in mice,” Histochemistry and Cell Biology, vol. 120, no. 6, pp. 493–503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Kram, E. Zcharia, O. Yacoby-Zeevi et al., “Heparanase is expressed in osteoblastic cells and stimulates bone formation and bone mass,” Journal of Cellular Physiology, vol. 207, no. 3, pp. 784–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. N. Smith, C. Freeman, D. Yu et al., “Heparanase in primary human osteoblasts,” Journal of Orthopaedic Research, vol. 28, no. 10, pp. 1315–1322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. R. Thompson, S. Modla, B. J. Grindel et al., “Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone,” Journal of Bone and Mineral Research, vol. 26, no. 3, pp. 618–629, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Zcharia, D. Philp, E. Edovitsky et al., “Heparanase regulates murine hair growth,” American Journal of Pathology, vol. 166, no. 4, pp. 999–1008, 2005. View at Scopus
  27. S. Malgouries, M. Donovan, S. Thibaut, and B. A. Bernard, “Heparanase 1: a key participant of inner root sheath differentiation program and hair follicle homeostasis,” Experimental Dermatology, vol. 17, no. 12, pp. 1017–1023, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Bernard, B. Méhul, C. Delattre, L. Simonetti, A. Thomas-Collignon, and R. Schmidt, “Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology?” Journal of Investigative Dermatology, vol. 117, no. 5, pp. 1266–1273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Goldshmidt, L. Nadav, H. Aingorn et al., “Human heparanase is localized within lysosomes in a stable form,” Experimental Cell Research, vol. 281, no. 1, pp. 50–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Zetser, F. Levy-Adam, V. Kaplan et al., “Processing and activation of latent heparanase occurs in lysosomes,” Journal of Cell Science, vol. 117, no. 11, pp. 2249–2258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. N. J. Nasser, “Heparanase involvement in physiology and disease,” Cellular and Molecular Life Sciences, vol. 65, no. 11, pp. 1706–1715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. R. Parish, “The role of heparan sulphate in inflammation,” Nature Reviews Immunology, vol. 6, no. 9, pp. 633–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Kirn-Safran, M. C. Farach-Carson, and D. D. Carson, “Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans,” Cellular and Molecular Life Sciences, vol. 66, no. 21, pp. 3421–3434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. D. Theocharis, S. S. Skandalis, G. N. Tzanakakis, and N. K. Karamanos, “Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting,” The FEBS Journal, vol. 277, no. 19, pp. 3904–3923, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. H. Kim, J. Turnbull, and S. Guimond, “Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor,” Journal of Endocrinology, vol. 209, no. 2, pp. 139–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. J. Ra and W. C. Parks, “Control of matrix metalloproteinase catalytic activity,” Matrix Biology, vol. 26, no. 8, pp. 587–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Zcharia, J. Jia, X. Zhang et al., “Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases,” PLoS ONE, vol. 4, no. 4, Article ID e5181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Martínez-Álvarez, C. Tudela, J. Pérez-Miguelsanz, S. O'Kane, J. Puerta, and M. W. J. Ferguson, “Medial edge epithelial cell fate during palatal fusion,” Developmental Biology, vol. 220, no. 2, pp. 343–357, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Cuervo and L. Covarrubias, “Death is the major fate of medial edge epithelial cells and the cause of basal lamina degradation during palatogenesis,” Development, vol. 131, no. 1, pp. 15–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Z. Jin and J. Ding, “Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion,” Development, vol. 133, no. 17, pp. 3341–3347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. F. V. Sani, K. Hallberg, B. D. Harfe, A. P. McMahon, A. Linde, and A. Gritli-Linde, “Fate-mapping of the epithelial seam during palatal fusion rules out epithelial-mesenchymal transformation,” Developmental Biology, vol. 285, no. 2, pp. 490–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Lochter, S. Galosy, J. Muschler, N. Freedman, Z. Werb, and M. J. Bissell, “Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells,” Journal of Cell Biology, vol. 139, no. 7, pp. 1861–1872, 1997. View at Publisher · View at Google Scholar · View at Scopus