About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 760298, 8 pages
http://dx.doi.org/10.1155/2013/760298
Research Article

Probiotic Potential and Safety Properties of Lactobacillus plantarum from Slovak Bryndza Cheese

1Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia
2Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia

Received 29 April 2013; Revised 12 July 2013; Accepted 4 August 2013

Academic Editor: Ali Gholamrezanezhad

Copyright © 2013 Anna Belicová et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. FAO/WHO, “Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation,” in FAO Food and Nutrition Paper no. 85 Roma, Italy, 2006.
  2. D. Jurkovič, L. Križková, R. Dušinský et al., “Identification and characterization of enterococci from bryndza cheese,” Letters in Applied Microbiology, vol. 42, no. 6, pp. 553–559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Berta, V. Chebeñová, B. Brežná, D. Pangallq, L. Valík, and T. Kuchta, “Identification of lactic acid bacteria in Slovakian bryndza cheese,” Journal of Food and Nutrition Research, vol. 48, no. 2, pp. 65–71, 2009. View at Scopus
  4. J. M. Mathara, U. Schillinger, P. M. Kutima et al., “Functional properties of Lactobacillus plantarum strains isolated from Maasai traditional fermented milk products in Kenya,” Current Microbiology, vol. 56, no. 4, pp. 315–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. N. Georgieva, I. N. Iliev, V. A. Chipeva, S. P. Dimitonova, J. Samelis, and S. T. Danova, “Identification and in vitro characterisation of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses,” Journal of Basic Microbiology, vol. 48, no. 4, pp. 234–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. de Vries, E. E. Vaughan, M. Kleerebezem, and W. M. de Vos, “Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract,” International Dairy Journal, vol. 16, no. 9, pp. 1018–1028, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Schillinger and F.-K. Lucke, “Identification of lactobacilli from meat and meat products,” Food Microbiology, vol. 4, no. 3, pp. 199–208, 1987. View at Scopus
  8. L. Uhlman, U. Schillinger, J. R. Rupnow, and W. H. Holzapfel, “Identification and characterization of two bacteriocin-producing strains of Lactococcus lactis isolated from vegetables,” International Journal of Food Microbiology, vol. 16, no. 2, pp. 141–151, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Quere, A. Deschamps, and M. C. Urdaci, “DNA probe and PCR-specific reaction for Lactobacillus plantarum,” Journal of Applied Microbiology, vol. 82, no. 6, pp. 783–790, 1997. View at Scopus
  10. Y.-L. Song, N. Kato, C.-X. Liu, Y. Matsumiya, H. Kato, and K. Watanabe, “Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA,” FEMS Microbiology Letters, vol. 187, no. 2, pp. 167–173, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Versalovic, M. Schneider, F. J. De Bruijn, and J. R. Lupski, “Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction,” Methods in Molecular and Cellular Biology, vol. 5, no. 1, pp. 25–40, 1994. View at Scopus
  12. C. G. Vinderola and J. A. Reinheimer, “Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance,” Food Research International, vol. 36, no. 9-10, pp. 895–904, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. P. Taranto, A. P. De Ruiz Holgado, and G. F. De Valdez, “Bile salt hydrolase activity in Enterococcus faecium strains,” Microbiology and Alimentary Nutrition, vol. 13, pp. 375–379, 1995.
  14. J. H. Miller, “Assay of β-galactosidase,” in Experiments in Molecular Genetics, J. H. Miller, Ed., pp. 352–355, CSH Laboratory Press, Cold Spring Harbor, NY, USA, 1972.
  15. EFSA, “Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance,” EFSA Journal, vol. 10, no. 6, pp. 2740–2749, 2012.
  16. H. M. L. J. Joosten and M. D. Northolt, “Conditions allowing the formation of biogenic-amines in cheese. 2. Decarboxylative properties of some nonstarter bacteria,” Netherlands Milk and Dairy Journal, vol. 41, no. 3, pp. 259–280, 1987.
  17. P. Burns, F. Patrignani, D. Serrazanetti et al., “Probiotic crescenza cheese containing lactobacillus casei and lactobacillus acidophilus manufactured with high-pressure homogenized milk,” Journal of Dairy Science, vol. 91, no. 2, pp. 500–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Jamaly, A. Benjouad, and M. Bouksaim, “Probiotic potential of Lactobacillus strains isolated from known popular traditional moroccan dairy products,” British Microbiology Research Journal, vol. 1, no. 4, pp. 79–94, 2011.
  19. V. Mishra and D. N. Prasad, “Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics,” International Journal of Food Microbiology, vol. 103, no. 1, pp. 109–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. De Angelis, S. Siragusa, M. Berloco et al., “Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding,” Research in Microbiology, vol. 157, no. 8, pp. 792–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-Y. Wang, P.-R. Lin, C.-C. Ng, and Y.-T. Shyu, “Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage,” Anaerobe, vol. 16, no. 6, pp. 578–585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. F. Fernández, S. Boris, and C. Barbés, “Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract,” Journal of Applied Microbiology, vol. 94, no. 3, pp. 449–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Pennacchia, D. Ercolini, G. Blaiotta, O. Pepe, G. Mauriello, and F. Villani, “Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics,” Meat Science, vol. 67, no. 2, pp. 309–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Y. Chen, J. J. Xu, J. B. Shuai, J. Chen, Z. Zhang, and W. Fang, “The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium,” International Journal of Food Microbiology, vol. 115, no. 3, pp. 307–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Kmet and F. Lucchini, “Aggregation of sow lactobacilli with diarrhoeagenic Escherichia coli,” Journal of Veterinary Medicine B, vol. 46, no. 10, pp. 683–687, 1999. View at Scopus
  26. L. Makras, V. Triantafyllou, D. Fayol-Messaoudi et al., “Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds,” Research in Microbiology, vol. 157, no. 3, pp. 241–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Schachtsiek, W. P. Hammes, and C. Hertel, “Characterization of Lactobacillus coryniformis DSM 20001T surface protein Cpf mediating coaggregation with and aggregation among pathogens,” Applied and Environmental Microbiology, vol. 70, no. 12, pp. 7078–7085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Essid, M. Medini, and M. Hassouna, “Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat,” Meat Science, vol. 81, no. 1, pp. 203–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Zago, M. E. Fornasari, D. Carminati et al., “Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses,” Food Microbiology, vol. 28, no. 5, pp. 1033–1040, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. C. Zhang, L. W. Zhang, M. Du et al., “Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food,” Microbiological Research, vol. 167, no. 1, pp. 27–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Tejero-Sarinena, J. Barlow, A. Costabile, G. R. Gibson, and I. Rowland, “In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids,” Anaerobe, vol. 18, no. 5, pp. 530–538, 2012.
  32. S. Ammor, E. Dufour, M. Zagorec, S. Chaillou, and I. Chevallier, “Characterization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures,” Food Microbiology, vol. 22, no. 6, pp. 529–538, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. B. Pisano, M. Casula, A. Corda, M. E. Fadda, M. Deplano, and S. Cosentino, “In vitro probiotic characteristics of Lactobacillus strains isolated from Fiore Sardo cheese,” Italian Journal of Food Science, vol. 20, no. 4, pp. 505–516, 2008. View at Scopus
  34. M. Begley, C. Hill, and C. G. M. Gahan, “Bile salt hydrolase activity in probiotics,” Applied and Environmental Microbiology, vol. 72, no. 3, pp. 1729–1738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. T. Ahn, G. B. Kim, K. S. Lim, Y. J. Baek, and H. U. Kim, “Deconjugation of bile salts by Lactobacillus acidophilus isolates,” International Dairy Journal, vol. 13, no. 4, pp. 303–311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Corzo and S. E. Gilliland, “Bile salt hydrolase activity of three strains of Lactobacillus acidophilus,” Journal of Dairy Science, vol. 82, no. 3, pp. 472–480, 1999. View at Scopus
  37. I. De Smet, L. Van Hoorde, M. Vande Woestyne, H. Christiaens, and W. Verstraete, “Significance of bile salt hydrolytic activities of lactobacilli,” Journal of Applied Bacteriology, vol. 79, no. 3, pp. 292–301, 1995. View at Scopus
  38. J. P. Grill, C. Cayuela, J. M. Antoine, and F. Schneider, “Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance,” Journal of Applied Microbiology, vol. 89, no. 4, pp. 553–563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. J. P. Grill, S. Perrin, and F. Schneider, “Bile salt toxicity to some bifidobacteria strains: role of conjugated bile salt hydrolase and pH,” Canadian Journal of Microbiology, vol. 46, no. 10, pp. 878–884, 2000. View at Scopus
  40. S. A. Moser and D. C. Savage, “Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in Lactobacilli,” Applied and Environmental Microbiology, vol. 67, no. 8, pp. 3476–3480, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. de Vrese, A. Stegelmann, B. Richter, S. Fenselau, C. Laue, and J. Schrezenmeir, “Probiotics—compensation for lactase insufficiency,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 421S–429S, 2001. View at Scopus
  42. A. B. Flórez, M. Egervärn, M. Danielsen et al., “Susceptibility of Lactobacillus plantarum strains to six antibiotics and definition of new susceptibility-resistance cutoff values,” Microbial Drug Resistance, vol. 12, no. 4, pp. 252–256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. S. Zhou, C. J. Pillidge, P. K. Gopal, and H. S. Gill, “Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains,” International Journal of Food Microbiology, vol. 98, no. 2, pp. 211–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. G. V. Pinto, C. M. A. P. Franz, U. Schillinger, and W. H. Holzapfel, “Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products,” International Journal of Food Microbiology, vol. 109, no. 3, pp. 205–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Zonenschain, A. Rebecchi, and L. Morelli, “Erythromycin- and tetracycline-resistant lactobacilli in Italian fermented dry sausages,” Journal of Applied Microbiology, vol. 107, no. 5, pp. 1559–1568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. C. Rea, C. M. A. P. Franz, W. H. Holzapfel, and T. M. Cogan, “Development of enterococci and production of tyramine during the manufacture and ripening of Cheddar cheese,” Irish Journal of Agricultural and Food Research, vol. 43, no. 2, pp. 247–258, 2004. View at Scopus
  47. T. Komprda, R. Burdychová, V. Dohnal, O. Cwiková, P. Sládková, and H. Dvořáčková, “Tyramine production in Dutch-type semi-hard cheese from two different producers,” Food Microbiology, vol. 25, no. 2, pp. 219–227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Aymerich, B. Martín, M. Garriga, M. C. Vidal-Carou, S. Bover-Cid, and M. Hugas, “Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages,” Journal of Applied Microbiology, vol. 100, no. 1, pp. 40–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Burdychova and T. Komprda, “Biogenic amine-forming microbial communities in cheese,” FEMS Microbiology Letters, vol. 276, no. 2, pp. 149–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Fernández, D. M. Linares, B. Del Río, V. Ladero, and M. A. Alvarez, “HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms,” Journal of Dairy Research, vol. 74, no. 3, pp. 276–282, 2007. View at Publisher · View at Google Scholar · View at Scopus