About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 760904, 8 pages
http://dx.doi.org/10.1155/2013/760904
Research Article

Gene Expression Profiling of Clostridium botulinum under Heat Shock Stress

1College of Life Science, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325000, China
2School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China
3Neurosurgery, The First Hospital of Jiamusi University, Jiamusi 154007, China
4Cardiovascular Surgery, The Fourth Hospital of Harbin Medical University, Harbin 157003, China
5Clinical Medicine Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China

Received 28 May 2013; Revised 16 August 2013; Accepted 25 August 2013

Academic Editor: Gulam Waris

Copyright © 2013 Wan-dong Liang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P.-K. Fang, B. H. Raphael, S. E. Maslanka, S. Cai, and B. R. Singh, “Analysis of genomic differences among Clostridium botulinum type A1 strains,” BMC Genomics, vol. 11, no. 1, article 725, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Lindström, K. Kiviniemi, and H. Korkeala, “Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing,” International Journal of Food Microbiology, vol. 108, no. 1, pp. 92–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Ferenci and B. Spira, “Variation in stress responses within a bacterial species and the indirect costs of stress resistance,” Annals of the New York Academy of Sciences, vol. 1113, pp. 105–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. E. N. Rangel, “Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes,” World Journal of Microbiology and Biotechnology, vol. 27, no. 6, pp. 1281–1296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Gao, Y. Wang, X. Liu et al., “Global transcriptome analysis of the heat shock response of Shewanella oneidensis,” Journal of Bacteriology, vol. 186, no. 22, pp. 7796–7803, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Horzempa, P. E. Carlson Jr., D. M. O'Dee, R. M. Q. Shanks, and G. J. Nau, “Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis,” BMC Microbiology, vol. 8, article 172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Sagane, K. Hasegawa, S. Mutoh et al., “Molecular characterization of GroES and GroEL homologues from Clostridium botulinum,” Journal of Protein Chemistry, vol. 22, no. 1, pp. 99–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. D. Shukla and B. R. Singh, “Identification of DnaJ-like chaperone in Clostridium botulinum type A,” Journal of Protein Chemistry, vol. 18, no. 6, pp. 695–700, 1999. View at Scopus
  9. K. Selby, M. Lindström, P. Somervuo, J. T. Heap, N. P. Minton, and H. Korkeala, “Important role of class I heat shock genes hrcA and dnaK in the heat shock response and the response to pH and NaCl stress of group I Clostridiusm botulinum strain ATCC 3502,” Applied and Environmental Microbiology, vol. 77, no. 9, pp. 2823–2830, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. H. D. Shukla and B. R. Singh, “Hemagglutinin-33 in the neurotoxin complex of typec A Clostridium botulinum is a Heat Shock Protein,” Botulinum Journal, vol. 1, no. 3, pp. 309–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Sebaihia, M. W. Peck, N. P. Minton et al., “Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes,” Genome Research, vol. 17, no. 7, pp. 1082–1092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Stintzi, “Gene expression profile of Campylobacter jejuni in response to growth temperature variation,” Journal of Bacteriology, vol. 185, no. 6, pp. 2009–2016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. P. S. Dehal, M. P. Joachimiak, M. N. Price et al., “MicrobesOnline: an integrated portal for comparative and functional genomics,” Nucleic Acids Research, vol. 38, no. 1, pp. D396–D400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. L. Fink, “Chaperone-mediated protein folding,” Physiological Reviews, vol. 79, no. 2, pp. 425–449, 1999. View at Scopus
  16. D. Frees, K. Savijoki, P. Varmanen, and H. Ingmer, “Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria,” Molecular Microbiology, vol. 63, no. 5, pp. 1285–1295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Rothfield, S. Justice, and J. García-Lara, “Bacterial cell division,” Annual Review of Genetics, vol. 33, pp. 423–448, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Tomoyasu, T. Yuki, S. Morimura et al., “The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression,” Journal of Bacteriology, vol. 175, no. 5, pp. 1344–1351, 1993. View at Scopus
  19. M. C. Sulavik, L. F. Gambino, and P. F. Miller, “The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds,” Molecular Medicine, vol. 1, no. 4, pp. 436–446, 1995. View at Scopus
  20. A. M. Stock, V. L. Robinson, and P. N. Goudreau, “Two-component signal transduction,” Annual Review of Biochemistry, vol. 69, pp. 183–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Antunes, E. Camiade, M. Monot, et al., “Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile,” Nucleic Acids Research, vol. 40, no. 21, pp. 10701–10718, 2012.
  22. K. Hiratsu, M. Amemura, H. Nashimoto, H. Shinagawa, and K. Makino, “The rpoE gene of Escherichia coli, which encodes σ(E), is essential for bacterial growth at high temperature,” Journal of Bacteriology, vol. 177, no. 10, pp. 2918–2922, 1995. View at Scopus
  23. T. L. Testerman, A. Vazquez-Torres, Y. Xu, J. Jones-Carson, S. J. Libby, and F. C. Fang, “The alternative sigma factor σE controls antioxidant defences required for Salmonella virulence and stationary-phase survival,” Molecular Microbiology, vol. 43, no. 3, pp. 771–782, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. L. M. Hsu, N. V. Vo, and M. J. Chamberlin, “Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11588–11592, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Rezzonico, S. Lariani, C. Barretto et al., “Global transcriptome analysis of the heat shock response of Bifidobacterium longum,” FEMS Microbiology Letters, vol. 271, no. 1, pp. 136–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y.-H. Han, W.-Z. Liu, Y.-Z. Shi, L.-Q. Lu, S.-D. Xiao, and Q.-H. Zhang, “Gene expression profile of helicobacter pylori in response to growth temperature variation,” Journal of Microbiology, vol. 47, no. 4, pp. 455–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. V. A. Rhodius, W. C. Suh, G. Nonaka, J. West, and C. A. Gross, “Conserved and variable functions of the sigmaE stress response in related genomes,” PLoS biology, vol. 4, no. 1, article e2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. S. Snyder, N. J. Loman, K. Fütterer, and M. J. Pallen, “Bacterial flagellar diversity and evolution: seek simplicity and distrust it?” Trends in Microbiology, vol. 17, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. I. Abrashev, S. B. Pashova, L. N. Stefanova, S. V. Vassilev, P. A. Dolashka-Angelova, and M. B. Angelova, “Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26,” Canadian Journal of Microbiology, vol. 54, no. 12, pp. 977–983, 2008. View at Publisher · View at Google Scholar · View at Scopus