About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 761451, 9 pages
http://dx.doi.org/10.1155/2013/761451
Research Article

Differential Influence of Components Resulting from Atmospheric-Pressure Plasma on Integrin Expression of Human HaCaT Keratinocytes

1Institute of Pharmacy, Department of Pharmaceutical Biology, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
2Leibniz Institute for Plasma Science and Technology e.V. (INP), Campus PlasmaMed/PlasmaVitro, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
3ZIK plasmatis, Leibniz Institute for Plasma Sciences and Technology e.V. (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany

Received 2 April 2013; Accepted 10 June 2013

Academic Editor: Maxim E. Darvin

Copyright © 2013 Beate Haertel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Nosenko, T. Shimizu, and G. E. Morfill, “Designing plasmas for chronic wound disinfection,” New Journal of Physics, vol. 11, Article ID 115013, 19 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Ermolaeva, A. F. Varfolomeev, M. Y. Chernukha et al., “Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds,” Journal of Medical Microbiology, vol. 60, no. 1, pp. 75–83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Isbary, J. Heinlin, T. Shimizu et al., “Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial,” British Journal of Dermatology, vol. 164, pp. 404–410, 2012.
  4. M. Polak, J. Winter, U. Schnabel, J. Ehlbeck, and K.-D. Weltmann, “Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications,” Plasma Processes and Polymers, vol. 9, no. 1, pp. 67–76, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. F. Hong, J. G. Kang, H. Y. Lee, H. S. Uhm, E. Moon, and Y. H. Park, “Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores,” Letters in Applied Microbiology, vol. 48, no. 1, pp. 33–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Avramidis, B. Stüwe, R. Wascher et al., “Fungicidal effects of an atmospheric pressure gas discharge and degradation mechanisms,” Surface and Coatings Technology, vol. 205, no. 1, pp. S405–S408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Hähnel, T. von Woedtke, and K.-D. Weltmann, “Influence of the air humidity on the reduction of Bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge,” Plasma Processes and Polymers, vol. 7, no. 3-4, pp. 244–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Y. Kim, Y.-S. Kim, I. G. Koo et al., “Bacterial inactivation of wound infection in a human skin model by liquid-phase discharge plasma,” PLoS ONE, vol. 6, no. 8, Article ID e24104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Fröhling, M. Baier, J. Ehlbeck, D. Knorr, and O. Schlüter, “Atmospheric pressure plasma treatment of Listeria innocua and Escherichia coli at polysaccharide surfaces: inactivation kinetics and flow cytometric characterization,” Innovative Food Science and Emerging Technologies, vol. 13, pp. 142–150, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. Sung, J. B. Huh, M. J. Yun, B. M. Chang, C. M. Jeong, and Y. C. Jeon, “Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments,” Journal of Advanced Prosthodontics, vol. 5, pp. 2–8, 2013.
  11. S. G. Joshi, M. Paff, G. Friedman, G. Fridman, A. Fridman, and A. D. Brooks, “Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma,” The American Journal of Infection Control, vol. 38, no. 4, pp. 293–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Y. Alkawareek, Q. T. Algwari, G. Laverty et al., “Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma,” PLoS ONE, vol. 7, no. 8, Article ID e44289, 2012. View at Publisher · View at Google Scholar
  13. K. Fricke, I. Koban, H. Tresp et al., “Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms,” PLoS ONE, vol. 7, no. 8, Article ID e42539, 2012. View at Publisher · View at Google Scholar
  14. B. Finke, F. Luethen, K. Schroeder et al., “The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces,” Biomaterials, vol. 28, no. 30, pp. 4521–4534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Daeschlein, S. Scholz, R. Ahmed et al., “Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma,” Journal of Hospital Infection, vol. 81, pp. 177–183, 2012.
  16. H. R. Metelmann, T. von Woedtke, R. Bussiahn et al., “Experimental Recovery of CO2-Laser Skin Lesions by Plasma Stimulation,” The American Journal of Cosmetic Surgery, vol. 29, pp. 52–56, 2012.
  17. J. Lademann, H. Richter, A. Alborova et al., “Risk assessment of the application of a plasma jet in dermatology,” Journal of Biomedical Optics, vol. 14, no. 5, Article ID 054025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Lademann, C. Ulrich, A. Patzelt et al., “Risk assessment of the application of tissue-tolerable plasma on human skin,” Clinical Plasma Medicine, vol. 1, pp. 5–10, 2013.
  19. J. W. Fluhr, S. Sassning, O. Lademann et al., “In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum,” Experimental Dermatology, vol. 21, no. 2, pp. 130–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kalghatgi, C. M. Kelly, E. Cerchar et al., “Effects of non-thermal plasma on mammalian cells,” PLoS ONE, vol. 6, no. 1, Article ID e16270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Haertel, K. Wende, T. von Woedtke, K. D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT-keratinocytes,” Experimental Dermatology, vol. 20, no. 3, pp. 282–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Haertel, F. Volkmann, T. von Woedtke, and U. Lindequist, “Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma,” Immunobiology, vol. 217, no. 6, pp. 628–633, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biology International, vol. 36, pp. 1217–1222, 2012.
  24. A. Shashurin, M. A. Stepp, T. S. Hawley et al., “Influence of cold plasma atmospheric jet on surface integrin expression of living cells,” Plasma Processes and Polymers, vol. 7, no. 3-4, pp. 294–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ptasińska, B. Bahnev, A. Stypczyńska, M. Bowden, N. J. Mason, and N. S. J. Braithwaite, “DNA strand scission induced by a non-thermal atmospheric pressure plasma jet,” Physical Chemistry Chemical Physics, vol. 12, no. 28, pp. 7779–7781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Leduc, D. Guay, S. Coulombe, and R. L. Leask, “Effects of non-thermal plasmas on DNA and mammalian cells,” Plasma Processes and Polymers, vol. 7, no. 11, pp. 899–909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. G. J. Kim, W. Kim, K. T. Kim, and J. K. Lee, “DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma,” Applied Physics Letters, vol. 96, no. 2, Article ID 021502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Blackert, B. Haertel, K. Wende, T. von Woedtke, and U. Lindequist, “Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT),” Journal of Dermatological Science, vol. 70, pp. 173–181, 2013.
  29. D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell, vol. 84, no. 3, pp. 359–369, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Illman, J. Lohi, and J. Keski-Oja, “Epilysin (MMP-28): structure, expression and potential functions,” Experimental Dermatology, vol. 17, no. 11, pp. 897–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Frøssing, B. Rønø, A. Hald, J. Rømer, and L. R. Lund, “Skin wound healing in MMP2-deficient and MMP2/Plasminogen double-deficient mice,” Experimental Dermatology, vol. 19, no. 8, pp. e234–e240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. G. Hudson and L. J. McCawley, “Contributions of the epidermal growth factor receptor to keratinocyte motility,” Microscopy Research and Technique, vol. 43, pp. 444–455, 1998.
  33. P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig, “Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line,” Journal of Cell Biology, vol. 106, no. 3, pp. 761–771, 1988. View at Scopus
  34. K. Oehmigen, M. Hähnel, R. Brandenburg, C. Wilke, K.-D. Weltmann, and T. von Woedtke, “The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids,” Plasma Processes and Polymers, vol. 7, no. 3-4, pp. 250–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. I. E. Kieft, J. L. V. Broers, V. Caubet-Hilloutou, D. W. Slaaf, F. C. S. Ramaekers, and E. Stoffels, “Electric discharge plasmas influence attachment of cultured CHO K1 cells,” Bioelectromagnetics, vol. 25, no. 5, pp. 362–368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Hoentsch, T. von Woedtke, K.-D. Weltmann, and J. B. Nebe, “Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro,” Journal of Physics D, vol. 45, no. 2, Article ID 025206, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Brun, P. Brun, M. Vono et al., “Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma,” PLoS ONE, vol. 7, no. 3, Article ID e33245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kalghatgi, G. Friedman, A. Fridman, and A. M. Clyne, “Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release,” Annals of Biomedical Engineering, vol. 38, no. 3, pp. 748–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. X.-M. Shi, G.-J. Zhang, Y.-K. Yuan, Y. Ma, G.-M. Xu, and Y. Yang, “Effects of low-temperature atmospheric air plasmas on the activity and function of human lymphocytes,” Plasma Processes and Polymers, vol. 5, no. 5, pp. 482–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Fridman, A. Shereshevsky, M. M. Jost et al., “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in Melanoma skin cancer cell lines,” Plasma Chemistry and Plasma Processing, vol. 27, no. 2, pp. 163–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Keidar, R. Walk, A. Shashurin et al., “Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy,” British Journal of Cancer, vol. 105, no. 9, pp. 1295–1301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Y. Kim, J. Ballato, P. Foy et al., “Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma,” Biosensors and Bioelectronics, vol. 28, no. 1, pp. 333–338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. C.-H. Kim, J. H. Bahn, S.-H. Lee et al., “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” Journal of Biotechnology, vol. 150, no. 4, pp. 530–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Vandamme, E. Robert, S. Lerondel et al., “ROS implication in a new antitumor strategy based on non-thermal plasma,” International Journal of Cancer, vol. 130, no. 9, pp. 2185–2194, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. S. J. Kim, T. H. Chung, S. H. Bae, and S. H. Leem, “Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet,” Applied Physics Letters, vol. 97, no. 2, Article ID 023702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. H. J. Lee, C. H. Shon, Y. S. Kim, S. Kim, G. C. Kim, and M. G. Kong, “Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma,” New Journal of Physics, vol. 11, Article ID 115026, 13 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Van der Flier and A. Sonnenberg, “Function and interactions of integrins,” Cell and Tissue Research, vol. 305, no. 3, pp. 285–298, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Koivisto, K. Larjava, L. Häkkinen, V.-J. Uitto, J. Heino, and H. Larjava, “Different integrins mediate cell spreading, haptotaxis and lateral migration of HaCaT keratinocytes on fibronectin,” Cell Adhesion and Communication, vol. 7, no. 3, pp. 245–257, 1999. View at Scopus
  49. T. Wen, Z. Zhang, Y. Yu, H. Qu, M. Koch, and M. Aumailley, “Integrin α3 subunit regulates events linked to epithelial repair, including keratinocyte migration and protein expression,” Wound Repair and Regeneration, vol. 18, no. 3, pp. 325–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. D. Widgerow, “Chronic wounds: is cellular ‘reception’ at fault? Examining integrins and intracellular signalling,” International Wound Journal, vol. 10, pp. 185–192, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. J.-I. Jun and L. F. Lau, “Cellular senescence controls fibrosis in wound healing,” Aging, vol. 2, no. 9, pp. 627–631, 2010. View at Scopus
  52. S. Kalghatgi, A. Fridman, J. Azizkhan-Clifford, and G. Friedman, “DNA damage in mammalian cells by non-thermal atmospheric pressure microsecond pulsed dielectric barrier discharged plasma is not mediated by ozone,” Plasma Processes and Polymers, vol. 9, pp. 726–732, 2012.
  53. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, pp. 47–95, 2002.
  54. K. P. Arjunan, G. Friedman, A. Fridman, and A. M. Clyne, “Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species,” Journal of the Royal Society Interface, vol. 9, no. 66, pp. 147–157, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Yan, Z. Xiong, F. Zou et al., “Plasma-induced death of HepG2 cancer cells: intracellular effects of reactive species,” Plasma Processes and Polymers, vol. 9, no. 1, pp. 59–66, 2012. View at Publisher · View at Google Scholar · View at Scopus