About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 764706, 9 pages
http://dx.doi.org/10.1155/2013/764706
Review Article

Virosome Presents Multimodel Cancer Therapy without Viral Replication

Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan

Received 8 October 2013; Accepted 31 October 2013

Academic Editor: Ryuichi Morishita

Copyright © 2013 Kotaro Saga and Yasufumi Kaneda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Burch, G. A. Croghan, D. A. Gastineau et al., “Immunotherapy (APC8015, provenge) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a phase 2 trial,” Prostate, vol. 60, no. 3, pp. 197–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Cheever and C. S. Higano, “PROVENGE (sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine,” Clinical Cancer Research, vol. 17, no. 11, pp. 3520–3526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Prieto, J. C. Yang, R. M. Sherry et al., “CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma,” Clinical Cancer Research, vol. 18, no. 7, pp. 2039–2047, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. S. L. Topalian, F. S. Hodi, J. R. Brahmer et al., “Safety, activity, and immune correlates of anti-PD-1 antibody in cancer,” The New England Journal of Medicine, vol. 366, no. 26, pp. 2443–2454, 2012. View at Publisher · View at Google Scholar
  6. R.-F. Wang, “Human tumor antigens: implications for cancer vaccine development,” Journal of Molecular Medicine, vol. 77, no. 9, pp. 640–655, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. K. M. Call, T. Glaser, C. Y. Ito et al., “Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus,” Cell, vol. 60, no. 3, pp. 509–520, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Gessler, A. Poustka, W. Cavenee, R. L. Neve, S. H. Orkin, and G. A. P. Bruns, “Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping,” Nature, vol. 343, no. 6260, pp. 774–778, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. P. van der Bruggen, C. Traversari, P. Chomez et al., “A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma,” Science, vol. 254, no. 5038, pp. 1643–1647, 1991. View at Scopus
  10. M. Peiper, P. S. Goedegebuure, J. R. Izbicki, and T. J. Eberlein, “Pancreatic cancer associated ascites-derived CTL recognize a nine-amino-acid peptide GP2 derived from HER2/neu,” Anticancer Research, vol. 19, no. 4, pp. 2471–2475, 1999. View at Scopus
  11. M. Peiper, P. S. Goedegebuure, D. C. Linehan, E. Ganguly, C. C. Douville, and T. J. Eberlein, “The HER2/neu-derived peptide p654-662 is a tumor-associated antigen in human pancreatic cancer recognized by cytotoxic T lymphocytes,” European Journal of Immunology, vol. 27, no. 5, pp. 1115–1123, 1997. View at Scopus
  12. P. Holliger, O. Manzke, M. Span et al., “Carcinoembryonic antigen (CEA)-specific T-cell activation in colon carcinoma induced by anti-CD3×anti-CEA bispecific diabodies and B7×anti- CEA bispecific fusion proteins,” Cancer Research, vol. 59, no. 12, pp. 2909–2916, 1999. View at Scopus
  13. Y. Oka, O. A. Elisseeva, A. Tsuboi et al., “Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms' tumor gene (WT1) product,” Immunogenetics, vol. 51, no. 2, pp. 99–107, 2000. View at Scopus
  14. R. N. Germain, “MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation,” Cell, vol. 76, no. 2, pp. 287–299, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Jondal, R. Schirmbeck, and J. Reimann, “MHC class I-restricted CTL responses to exogenous antigens,” Immunity, vol. 5, no. 4, pp. 295–302, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Mellman, S. J. Turley, and R. M. Steinman, “Antigen processing for amateurs and professionals,” Trends in Cell Biology, vol. 8, no. 6, pp. 231–237, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Cresswell, A. L. Ackerman, A. Giodini, D. R. Peaper, and P. A. Wearsch, “Mechanisms of MHC class I-restricted antigen processing and cross-presentation,” Immunological Reviews, vol. 207, pp. 145–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Marchand, N. van Baren, P. Weynants et al., “Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1,” British Journal of Cancer, vol. 80, pp. 219–230, 1999. View at Publisher · View at Google Scholar
  19. M. H. Kershaw, J. A. Westwood, and P. K. Darcy, “Gene-engineered T cells for cancer therapy,” Nature Reviews Cancer, vol. 13, pp. 525–541, 2013. View at Publisher · View at Google Scholar
  20. C.-Y. Li, Q. Huang, and H.-F. Kung, “Cytokine and immuno-gene therapy for solid tumors,” Cellular & Molecular Immunology, vol. 2, no. 2, pp. 81–91, 2005. View at Scopus
  21. C. Fillat, M. Carrió, A. Cascante, and B. Sangro, “Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application,” Current Gene Therapy, vol. 3, no. 1, pp. 13–26, 2003. View at Scopus
  22. J. A. Roth, “Adenovirus p53 gene therapy,” Expert Opinion on Biological Therapy, vol. 6, no. 1, pp. 55–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Kirn, R. L. Martuza, and J. Zwiebel, “Replication-selective virotherapy for cancer: biological principles, risk management and future directions,” Nature Medicine, vol. 7, no. 7, pp. 781–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. R. M. Lorence, P. A. Rood, and K. W. Kelley, “Newcastle disease virus as an antineoplastic agent: induction of tumor necrosis factor-α and augmentation of its cytotoxicity,” Journal of the National Cancer Institute, vol. 80, no. 16, pp. 1305–1312, 1988. View at Scopus
  25. M. C. Coffey, J. E. Strong, P. A. Forsyth, and P. W. K. Lee, “Reovirus therapy of tumors with activated Ras pathway,” Science, vol. 282, no. 5392, pp. 1332–1334, 1998. View at Scopus
  26. R. L. Martuza, A. Malick, J. M. Markert, K. L. Ruffner, and D. M. Coen, “Experimental therapy of human glioma by means of a genetically engineered virus mutant,” Science, vol. 252, no. 5007, pp. 854–856, 1991. View at Scopus
  27. J. R. Bischoff, D. H. Kirn, A. Williams et al., “An adenovirus mutant that replicates selectively in p53-deficient human tumor cells,” Science, vol. 274, no. 5286, pp. 373–376, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Mastrangelo, H. C. Maguire Jr., L. C. Eisenlohr et al., “Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma,” Cancer Gene Therapy, vol. 6, no. 5, pp. 409–422, 1999. View at Scopus
  29. S. H. Thorne, T.-H. H. Hwang, W. E. O'Gorman et al., “Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963,” The Journal of Clinical Investigation, vol. 117, no. 11, pp. 3350–3358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. J. Earp, S. E. Delos, H. E. Park, and J. M. White, “The many mechanisms of viral membrane fusion proteins,” in Membrane Trafficking in Viral Replication, D. M. Marsh, Ed., pp. 25–66, Springer, Berlin, Germany, 2005.
  31. J. Almeida, D. C. Edwards, C. Brand, and T. Heath, “Formation of virosomes from influenza subunits and liposomes,” The Lancet, vol. 306, pp. 899–901, 1975.
  32. R. Zurbriggen, “Immunostimulating reconstituted influenza virosomes,” Vaccine, vol. 21, no. 9-10, pp. 921–924, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Yamada, Y. Iwasaki, H. Tada et al., “Nanoparticles for the delivery of genes and drugs to human hepatocytes,” Nature Biotechnology, vol. 21, no. 8, pp. 885–890, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Cornet, M. Vandenbranden, J. Cogniaux, L. Giurgea, D. Dekegel, and J. M. Ruysschaert, “Virosomes reconstituted from human immunodeficiency virus proteins and lipids,” Biochemical and Biophysical Research Communications, vol. 167, no. 1, pp. 222–231, 1990. View at Publisher · View at Google Scholar · View at Scopus
  35. D. R. Kapczynski and T. M. Tumpey, “Development of a virosome vaccine for Newcastle disease virus,” Avian Diseases, vol. 47, no. 3, pp. 578–587, 2003. View at Scopus
  36. T. Uchida, J. Kim, M. Yamaizumi, Y. Miyake, and Y. Okada, “Reconstitution of lipid vesicles associated with HVJ (Sendai virus) spikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin,” Journal of Cell Biology, vol. 80, no. 1, pp. 10–20, 1979. View at Scopus
  37. Y. Kaneda, T. Nakajima, T. Nishikawa et al., “Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system,” Molecular Therapy, vol. 6, no. 2, pp. 219–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Felnerova, J.-F. Viret, R. Glück, and C. Moser, “Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs,” Current Opinion in Biotechnology, vol. 15, no. 6, pp. 518–529, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. P. E. Lund, R. C. Hunt, M. M. Gottesman, and C. Kimchi-Sarfaty, “Pseudovirions as vehicles for the delivery of siRNA,” Pharmaceutical Research, vol. 27, no. 3, pp. 400–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Moser, I. C. Metcalfe, and J.-F. Viret, “Virosomal adjuvanted antigen delivery systems,” Expert Review of Vaccines, vol. 2, no. 2, pp. 189–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. D. L. Suarez and S. Schultz-Cherry, “Immunology of avian influenza virus: a review,” Developmental and Comparative Immunology, vol. 24, no. 2-3, pp. 269–283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Noda and Y. Kawaoka, “Structure of influenza virus ribonucleoprotein complexes and their packaging into virions,” Reviews in Medical Virology, vol. 20, no. 6, pp. 380–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. J. Skehel and D. C. Wiley, “Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin,” Annual Review of Biochemistry, vol. 69, pp. 531–569, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Fukuyama and Y. Kawaoka, “The pathogenesis of influenza virus infections: the contributions of virus and host factors,” Current Opinion in Immunology, vol. 23, no. 4, pp. 481–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. K. J. Cross, L. M. Burleigh, and D. A. Steinhauer, “Mechanisms of cell entry by influenza virus,” Expert Reviews in Molecular Medicine, vol. 3, pp. 1–18, 2001. View at Publisher · View at Google Scholar
  46. A. Yoshimura, K. Kuroda, K. Kawasaki, S. Yamashina, T. Maeda, and S. I. Ohnishi, “Infectious cell entry mechanism of influenza virus,” Journal of Virology, vol. 43, no. 1, pp. 284–293, 1982. View at Scopus
  47. R. Bron, A. Ortiz, J. Dijkstra, T. Stegmann, and J. Wilschut, “Preparation, properties, and applications of reconstituted influenza virus envelopes (virosomes),” in Methods in Enzymology, N. Duzgunees, Ed., pp. 313–331, Academic Press, San Diego, Calif, USA, 1993.
  48. T. Stegmann, H. W. Morselt, F. P. Booy, J. F. van Breemen, G. Scherphof, and J. Wilschut, “Functional reconstitution of influenza virus envelopes,” The EMBO Journal, vol. 6, no. 9, pp. 2651–2659, 1987. View at Scopus
  49. R. Bron, A. Ortiz, and J. Wilschut, “Cellular cytoplasmic delivery of a polypeptide toxin by reconstituted influenza virus envelopes (virosomes),” Biochemistry, vol. 33, no. 31, pp. 9110–9117, 1994. View at Scopus
  50. R. Glück, R. Mischler, B. Finkel, J. U. Que, B. Scarpa, and S. J. Cryz Jr., “Immunogenicity of new virosome influenza vaccine in elderly people,” The Lancet, vol. 344, no. 8916, pp. 160–163, 1994. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Mischler and I. C. Metcalfe, “Inflexal V a trivalent virosome subunit influenza vaccine: production,” Vaccine, vol. 20, no. 5, pp. B17–B23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Zurbriggen and R. Glück, “Immunogenicity of IRIV- versus alum-adjuvanted diphtheria and tetanus toxoid vaccines in influenza primed mice,” Vaccine, vol. 17, no. 11-12, pp. 1301–1305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Zurbriggen, I. Novak-Hofer, A. Seelig, and R. Glück, “IRIV-adjuvanted hepatitis A vaccine: in vivo absorption and biophysical characterization,” Progress in Lipid Research, vol. 39, no. 1, pp. 3–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Pöltl-Frank, R. Zurbriggen, A. Helg et al., “Use of reconstituted influenza virus virosomes as an immunopotentiating delivery system for a peptide-based vaccine,” Clinical and Experimental Immunology, vol. 117, no. 3, pp. 496–503, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Correale, M. G. Cusi, M. Sabatino et al., “Tumour-associated antigen (TAA)-specific cytotoxic T cell (CTL) response in vitro and in a mouse model, induced by TAA-plasmids delivered by influenza virosomes,” European Journal of Cancer, vol. 37, no. 16, pp. 2097–2103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. M. G. Cusi, M. T. del Vecchio, C. Terrosi et al., “Immune-reconstituted influenza virosome containing CD40L gene enhances the immunological and protective activity of a carcinoembryonic antigen anticancer vaccine,” Journal of Immunology, vol. 174, no. 11, pp. 7210–7216, 2005. View at Scopus
  57. Y. Yang and J. M. Wilson, “CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40,” Science, vol. 273, no. 5283, pp. 1862–1864, 1996. View at Scopus
  58. S. P. Schoenberger, R. E. M. Toes, E. I. H. van Dervoort, R. Offringa, and C. J. M. Melief, “T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD4OL interactions,” Nature, vol. 393, no. 6684, pp. 480–483, 1998. View at Scopus
  59. L. Bungener, K. Serre, L. Bijl et al., “Virosome-mediated delivery of protein antigens to dendritic cells,” Vaccine, vol. 20, no. 17-18, pp. 2287–2295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Angel, L. Chaperot, J.-P. Molens et al., “Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells,” Vaccine, vol. 25, no. 19, pp. 3913–3921, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Correale, M. T. del Vecchio, T. Renieri et al., “Anti-angiogenetic effects of immune-reconstituted influenza virosomes assembled with parathyroid hormone-related protein derived peptide vaccine,” Cancer Letters, vol. 263, no. 2, pp. 291–301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. E. Mastrobattista, P. Schoen, J. Wilschut, D. J. A. Crommelin, and G. Storm, “Targeting influenza virosomes to ovarian carcinoma cells,” FEBS Letters, vol. 509, no. 1, pp. 71–76, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Schoen, L. Leserman, and J. Wilschut, “Fusion of reconstituted influenza virus envelopes with liposomes mediated by streptavidin/biotin interactions,” FEBS Letters, vol. 390, no. 3, pp. 315–318, 1996. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Waelti, N. Wegmann, R. Schwaninger et al., “Targeting HER-2/neu with antirat neu virosomes for cancer therapy,” Cancer Research, vol. 62, no. 2, pp. 437–444, 2002. View at Scopus
  65. A. Jamali, M. Holtrop, A. de Haan et al., “Cationic influenza virosomes as an adjuvanted delivery system for CTL induction by DNA vaccination,” Immunology Letters, vol. 148, no. 1, pp. 77–82, 2012. View at Publisher · View at Google Scholar
  66. U. Wiedermann, C. Wiltschke, J. Jasinska et al., “A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study,” Breast Cancer Research and Treatment, vol. 119, no. 3, pp. 673–683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Curran and D. Kolakofsky, “Replication of paramyxoviruses,” Advances in Virus Research, vol. 54, pp. 403–422, 1999. View at Scopus
  68. Y. Okada, “Sendai virus-induced cell fusion,” in Methods in Enzymology, N. Duzgunes, Ed., pp. 18–41, Academic Press, San Diego, Calif, USA, 1993.
  69. T. Takimoto, G. L. Taylor, H. C. Connaris, S. J. Crennell, and A. Portner, “Role of the hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion,” Journal of Virology, vol. 76, no. 24, pp. 13028–13033, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Asano and K. Asano, “Viral proteins in cell fusion,” Tokai Journal of Experimental and Clinical Medicine, vol. 7, supplement, pp. 193–196, 1982. View at Scopus
  71. A. M. Haywood and B. P. Boyer, “Sendai virus membrane fusion: time course and effect of temperature, pH, calcium, and receptor concentration,” Biochemistry, vol. 21, no. 24, pp. 6041–6046, 1982. View at Scopus
  72. Y. Kaneda, Y. Saeki, and R. Morishita, “Gene therapy using HVJ-liposomes: the best of both worlds?” Molecular Medicine Today, vol. 5, no. 7, pp. 298–303, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Kaneda, “New vector innovation for drug delivery: development of fusigenic non-viral particles,” Current Drug Targets, vol. 4, no. 8, pp. 599–602, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Shimamura, R. Morishita, M. Endoh et al., “HVJ-envelope vector for gene transfer into central nervous system,” Biochemical and Biophysical Research Communications, vol. 300, no. 2, pp. 464–471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Oshima, M. Shimamura, S. Mizuno et al., “Intrathecal injection of HVJ-E containing HGF gene to cerebrospinal fluid can prevent and ameliorate hearing impairment in rats,” The FASEB Journal, vol. 18, no. 1, pp. 212–214, 2004. View at Scopus
  76. Y. D. Kim, K.-G. Park, R. Morishita et al., “Liver-directed gene therapy of diabetic rats using an HVJ-E vector containing EBV plasmids expressing insulin and GLUT 2 transporter,” Gene Therapy, vol. 13, no. 3, pp. 216–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Ito, S. Yamamoto, K. Nimura, K. Hiraoka, K. Tamai, and Y. Kaneda, “Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin,” Journal of Gene Medicine, vol. 7, no. 8, pp. 1044–1052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Kawano, S. Komaba, T. Kanamori, and Y. Kaneda, “A new therapy for highly effective tumor eradication using HVJ-E combined with chemotherapy,” BMC Medicine, vol. 5, article 28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. J. L. Ziegler, “Spontaneous remission in Burkitt’s lymphoma,” National Cancer Institute Monographs, vol. 44, pp. 61–65, 1976.
  80. T. Asada, “Treatment of human cancer with mumps virus,” Cancer, vol. 34, no. 6, pp. 1907–1928, 1974. View at Scopus
  81. E. Kelly and S. J. Russell, “History of oncolytic viruses: genesis to genetic engineering,” Molecular Therapy, vol. 15, no. 4, pp. 651–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. J. J. Davis and B. Fang, “Oncolytic virotherapy for cancer treatment: challenges and solutions,” Journal of Gene Medicine, vol. 7, no. 11, pp. 1380–1389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. D. H. Kirn and S. H. Thorne, “Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer,” Nature Reviews Cancer, vol. 9, no. 1, pp. 64–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. T.-C. Liu and D. Kirn, “Gene therapy progress and prospects cancer: oncolytic viruses,” Gene Therapy, vol. 15, no. 12, pp. 877–884, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Msaouel, I. D. Iankov, C. Allen et al., “Engineered measles virus as a novel oncolytic therapy against prostate cancer,” Prostate, vol. 69, no. 1, pp. 82–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Kurooka and Y. Kaneda, “Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells,” Cancer Research, vol. 67, no. 1, pp. 227–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Matsushima-Miyagi, K. Hatano, M. Nomura et al., “TRAIL and Noxa are selectively upregulated in prostate cancer cells downstream of the RIG-I/MAVS signaling pathway by nonreplicating Sendai virus particles,” Clinical Cancer Research, vol. 18, no. 22, pp. 6271–6283, 2012. View at Publisher · View at Google Scholar
  88. C. A. Piccirillo and E. M. Shevach, “Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells,” Journal of Immunology, vol. 167, no. 3, pp. 1137–1140, 2001. View at Scopus
  89. S. Sakaguchi, “Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self,” Nature Immunology, vol. 6, no. 4, pp. 345–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Sasada, M. Kimura, Y. Yoshida, M. Kanai, and A. Takabayashi, “CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression,” Cancer, vol. 98, no. 5, pp. 1089–1099, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. M. Lund, L. Alexopoulou, A. Sato et al., “Recognition of single-stranded RNA viruses by toll-like receptor 7,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5598–5603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Triantafilou, G. Orthopoulos, E. Vakakis et al., “Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly toll-like receptor (TLR) 8-dependent,” Cellular Microbiology, vol. 7, no. 8, pp. 1117–1126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Kato, O. Takeuchi, S. Sato et al., “Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses,” Nature, vol. 441, no. 1, pp. 101–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Suzuki, M. Kurooka, Y. Hiroaki, Y. Fujiyoshi, and Y. Kaneda, “Sendai virus F glycoprotein induces IL-6 production in dendritic cells in a fusion-independent manner,” FEBS Letters, vol. 582, no. 9, pp. 1325–1329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Fujihara, M. Kurooka, T. Miki, and Y. Kaneda, “Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation,” Cancer Immunology, Immunotherapy, vol. 57, no. 1, pp. 73–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Kawaguchi, Y. Miyamoto, T. Inoue, and Y. Kaneda, “Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle,” International Journal of Cancer, vol. 124, no. 10, pp. 2478–2487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. R. B. Seth, L. Sun, C.-K. Ea, and Z. J. Chen, “Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3,” Cell, vol. 122, no. 5, pp. 669–682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. P. A. Holoch and T. S. Griffith, “TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies,” European Journal of Pharmacology, vol. 625, no. 1–3, pp. 63–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Ploner, R. Kofler, and A. Villunger, “Noxa: at the tip of the balance between life and death,” Oncogene, vol. 27, supplement 1, pp. S84–S92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Eitz Ferrer, S. Potthoff, S. Kirschnek et al., “Induction of Noxa-mediated apoptosis by modified vaccinia virus Ankara depends on viral recognition by cytosolic helicases, leading to IRF-3/IFN-β-dependent induction of pro-apoptotic Noxa,” PLoS Pathogens, vol. 7, no. 6, Article ID e1002083, 2011. View at Scopus
  101. R. Romieu-Mourez, M. Solis, A. Nardin et al., “Distinct roles for IFN regulatory factor (IRF)-3 and IRF-7 in the activation of antitumor properties of human macrophages,” Cancer Research, vol. 66, no. 21, pp. 10576–10585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. M. T. Valentine, P. M. Fordyce, and S. M. Block, “Eg5 steps it up!,” Cell Division, vol. 1, article 31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Blangy, H. A. Lane, P. d'Hérin, M. Harper, M. Kress, and E. A. Nigg, “Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo,” Cell, vol. 83, no. 7, pp. 1159–1169, 1995. View at Scopus
  104. M. Matsuda, T. Yamamoto, A. Matsumura, and Y. Kaneda, “Highly efficient eradication of intracranial glioblastoma using Eg5 siRNA combined with HVJ envelope,” Gene Therapy, vol. 16, no. 12, pp. 1465–1476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Matsuda, K. Nimura, T. Shimbo et al., “Immunogene therapy using immunomodulating HVJ-E vector augments anti-tumor effects in murine malignant glioma,” Journal of Neuro-Oncology, vol. 103, no. 1, pp. 19–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Villar and I. M. Barroso, “Role of sialic acid-containing molecules in paramyxovirus entry into the host cell: a minireview,” Glycoconjugate Journal, vol. 23, no. 1-2, pp. 5–17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Nomura, T. Shimbo, Y. Miyamoto, M. Fukuzawa, and Y. Kaneda, “13-Cis retinoic acid can enhance the antitumor activity of non-replicating Sendai virus particle against neuroblastoma,” Cancer Science, vol. 104, no. 2, pp. 238–244, 2013. View at Publisher · View at Google Scholar
  108. T. Shimbo, M. Kawachi, K. Saga et al., “Development of a transferrin receptor-targeting HVJ-E vector,” Biochemical and Biophysical Research Communications, vol. 364, no. 3, pp. 423–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Saga, K. Tamai, M. Kawachi et al., “Functional modification of Sendai virus by siRNA,” Journal of Biotechnology, vol. 133, no. 3, pp. 386–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. E. N. Benveniste, “Cytokine actions in the central nervous system,” Cytokine and Growth Factor Reviews, vol. 9, no. 3-4, pp. 259–275, 1998. View at Publisher · View at Google Scholar · View at Scopus
  111. M. P. Colombo and G. Trinchieri, “Interleukin-12 in anti-tumor immunity and immunotherapy,” Cytokine and Growth Factor Reviews, vol. 13, no. 2, pp. 155–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. W. T. Watford, M. Moriguchi, A. Morinobu, and J. J. O'Shea, “The biology of IL-12: coordinating innate and adaptive immune responses,” Cytokine and Growth Factor Reviews, vol. 14, no. 5, pp. 361–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Saga, K. Tamai, T. Yamazaki, and Y. Kaneda, “Systemic administration of a novel immune-stimulatory pseudovirion suppresses lung metastatic melanoma by regionally enhancing IFN-γ production,” Clinical Cancer Research, vol. 19, no. 3, pp. 668–679, 2013. View at Publisher · View at Google Scholar
  114. C. E. Meacham and S. J. Morrison, “Tumour heterogeneity and cancer cell plasticity,” Nature, vol. 501, pp. 328–337, 2013. View at Publisher · View at Google Scholar