About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 780458, 12 pages
http://dx.doi.org/10.1155/2013/780458
Research Article

A Partial Volume Effect Correction Tailored for 18F-FDG-PET Oncological Studies

1IBFM-CNR, Via F.lli Cervi 93, 20090 Segrate, Milan, Italy
2H San Raffaele, Via Olgettina 62, 20090 Segrate, Milan, Italy
3University of Milan-Bicocca, Milan, Italy

Received 30 April 2013; Revised 2 August 2013; Accepted 2 August 2013

Academic Editor: Noriyoshi Sawabata

Copyright © 2013 F. Gallivanone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Mankoff and W. B. Eubank, “Current and future use of positron emission tomography (PET) in breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 11, no. 2, pp. 125–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Plathow and W. A. Weber, “Tumor cell metabolism imaging,” Journal of Nuclear Medicine, vol. 49, no. 6, pp. 43S–63S, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Lapela, A. Eigtved, S. Jyrkkiö et al., “Experience in qualitative and quantitative FDG PET in follow-up of patients with suspected recurrence from head and neck cancer,” European Journal of Cancer, vol. 36, no. 7, pp. 858–867, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics, vol. 27, pp. S215–S229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Castell and G. J. R. Cook, “Quantitative techniques in 18FDG PET scanning in oncology,” British Journal of Cancer, vol. 98, no. 10, pp. 1597–1601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Strobel, U. E. Exner, K. D. M. Stumpe et al., “The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 11, pp. 2000–2008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Hoshikawa, T. Mitani, Y. Nishiyama, Y. Yamamoto, M. Ohkawa, and N. Mori, “Evaluation of the therapeutic effects and recurrence for head and neck cancer after chemoradiotherapy by FDG-PET,” Auris Nasus Larynx, vol. 36, no. 2, pp. 192–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. K. Shankar, J. M. Hoffman, S. Bacharach et al., “Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in national cancer institute trials,” Journal of Nuclear Medicine, vol. 47, no. 6, pp. 1059–1066, 2006. View at Scopus
  9. A. Stahl, K. Ott, M. Schwaiger, and W. A. Weber, “Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 11, pp. 1471–1479, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Gil-Rendo, F. Martínez-Regueira, G. Zornoza, M. J. García-Velloso, C. Beorlegui, and N. Rodriguez-Spiteri, “Association between [18F] fluorodeoxyglucose uptake and prognostic parameters in breast cancer,” British Journal of Surgery, vol. 96, no. 2, pp. 166–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Schmidt, E. Bollschweiler, M. Dietlein et al., “Mean and maximum standardized uptake values in [18F]FDG-PET for assessment of histopathological response in oesophageal squamous cell carcinoma or adenocarcinoma after radiochemotherapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 5, pp. 735–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Berriolo-Riedinger, C. Touzery, J.-M. Riedinger et al., “[18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 12, pp. 1915–1924, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Avril, M. Menzel, J. Dose et al., “Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis,” Journal of Nuclear Medicine, vol. 42, no. 1, pp. 9–16, 2001. View at Scopus
  14. E. J. Hoffman, P. D. Cutler, T. M. Guerrero, W. M. Digby, and J. C. Mazziotta, “Assessment of accuracy of PET utilizing a 3-D phantom to simulate the activity distribution of [18F]fluorodeoxyglucose uptake in the human brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 11, no. 2, pp. A17–A25, 1991. View at Scopus
  15. R. M. Kessler, J. R. Ellis Jr., and M. Eden, “Analysis of emission tomographic scan data: Limitations imposed by resolution and background,” Journal of Computer Assisted Tomography, vol. 8, no. 3, pp. 514–522, 1984. View at Scopus
  16. M. Soret, S. L. Bacharach, and I. Buvat, “Partial-volume effect in PET tumor imaging,” Journal of Nuclear Medicine, vol. 48, no. 6, pp. 932–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. J. Hoffman, S. C. Huang, and M. E. Phelps, “Quantitation in positron emission computer tomography: effect of object size,” Journal of Computer Assisted Tomography, vol. 3, no. 3, pp. 299–308, 1978. View at Scopus
  18. O. G. Rousset, Y. Ma, and A. C. Evans, “Correction for partial volume effects in PET: principle and validation,” Journal of Nuclear Medicine, vol. 39, no. 5, pp. 904–911, 1998. View at Scopus
  19. H. W. Müller-Gärtner, J. M. Links, J. L. Prince et al., “Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects,” Journal of Cerebral Blood Flow and Metabolism, vol. 12, no. 4, pp. 571–583, 1992. View at Scopus
  20. N. Boussion, M. Hatt, F. Lamare et al., “A multiresolution image based approach for correction of partial volume effects in emission tomography,” Physics in Medicine and Biology, vol. 51, no. 7, pp. 1857–1876, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Vesselle, R. A. Schmidt, J. M. Pugsley et al., “Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography,” Clinical Cancer Research, vol. 6, no. 10, pp. 3837–3844, 2000. View at Scopus
  22. A. van Baardwijk, B. G. Baumert, G. Bosmans et al., “The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning,” Cancer Treatment Reviews, vol. 32, no. 4, pp. 245–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Yu, X. Li, L. Xing et al., “Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study,” International Journal of Radiation Oncology Biology Physics, vol. 75, no. 5, pp. 1468–1474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. A. Weber, S. I. Ziegler, R. Thödtmann, A.-R. Hanauske, and M. Schwaiger, “Reproducibility of metabolic measurements in malignant tumors using FDG PET,” Journal of Nuclear Medicine, vol. 40, no. 11, pp. 1771–1777, 1999. View at Scopus
  25. Y. E. Erdi, O. Mawlawi, S. M. Larson et al., “Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding,” Cancer, vol. 80, no. 12, supplement, pp. 2505–2509, 1997. View at Scopus
  26. S. M. Srinivas, T. Dhurairaj, S. Basu, G. Bural, S. Surti, and A. Alavi, “A recovery coefficient method for partial volume correction of PET images,” Annals of Nuclear Medicine, vol. 23, no. 4, pp. 341–348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Jentzen, L. Freudenberg, E. G. Eising, M. Heinze, W. Brandau, and A. Bockisch, “Segmentation of PET volumes by iterative image thresholding,” Journal of Nuclear Medicine, vol. 48, no. 1, pp. 108–114, 2007. View at Scopus
  28. D. A. Schinagl, J. H. Kaanders, and W. J. Oyen, “From anatomical to biological target volumes: the role of PET in radiation treatment planning,” Cancer Imaging, vol. 6, pp. S107–S116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. D. C. Crawford, M. A. Flower, B. E. Pratt et al., “Thyroid volume measurement in thyrotoxic patients: comparison between ultrasonography and iodine-124 positron emission tomography,” European Journal of Nuclear Medicine, vol. 24, no. 12, pp. 1470–1478, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. N. C. Krak, R. Boellaard, O. S. Hoekstra, J. W. R. Twisk, C. J. Hoekstra, and A. A. Lammertsma, “Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 3, pp. 294–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Gallivanone, A. Stefano, E. Grosso et al., “PVE correction in PET-CT whole-body oncological studies from PVE-affected images images,” IEEE Transactions on Nuclear Science, vol. 58, no. 3, pp. 736–747, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Graham, L. M. Peterson, and R. M. Hayward, “Comparison of simplified quantitative analyses of FDG uptake,” Nuclear Medicine and Biology, vol. 27, no. 7, pp. 647–655, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Avril, S. Bense, S. I. Ziegler et al., “Breast imaging with fluorine-18-FDG PET: quantitative image analysis,” Journal of Nuclear Medicine, vol. 38, no. 8, pp. 1186–1191, 1997. View at Scopus
  34. A. Dimitrakopoulou-Strauss, L. G. Strauss, T. Heichel et al., “The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions,” Journal of Nuclear Medicine, vol. 43, no. 4, pp. 510–518, 2002. View at Scopus
  35. I. C. Smith, A. E. Welch, A. W. Hutcheon et al., “Positron emission tomography using [18F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy,” Journal of Clinical Oncology, vol. 18, no. 8, pp. 1676–1688, 2000. View at Scopus
  36. J. R. Lee, M. T. Madsen, D. Bushnel, and Y. Menda, “A threshold method to improve standardized uptake value reproducibility,” Nuclear Medicine Communications, vol. 21, no. 7, pp. 685–690, 2000. View at Scopus
  37. A. C. Kole, O. E. Nieweg, and J. Pruim, “Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-11C]Tyrosine PET,” Journal of Nuclear Medicine, vol. 38, no. 5, pp. 692–696, 1997. View at Scopus
  38. Y. Nakamoto, K. R. Zasadny, H. Minn, and R. L. Wahl, “Reproducibility of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2-[18F]fluoro-D-glucose,” Molecular Imaging and Biology, vol. 4, no. 2, pp. 171–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Boellaard, N. C. Krak, O. S. Hoekstra, and A. A. Lammertsma, “Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study,” Journal of Nuclear Medicine, vol. 45, no. 9, pp. 1519–1527, 2004. View at Scopus
  40. M. Teräs, T. Tolvanen, J. J. Johansson, J. J. Williams, and J. Knuuti, “Performance of the new generation of whole-body PET/CT scanners: Discovery STE and Discovery VCT,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 10, pp. 1683–1692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. E. Daube-Witherspoon, J. S. Karp, M. E. Casey et al., “PET performance measurements using the NEMA NU 2-2001 standard,” Journal of Nuclear Medicine, vol. 43, no. 10, pp. 1398–1409, 2002. View at Scopus
  42. F. Zito, E. De Bernardi, C. Soffientini, C. Canzi, R. Casati, and P. Gerundini, “The use of zeolites to generate PET phantoms for the validation of quantification strategies in oncology,” Medical Physics, vol. 39, no. 9, pp. 5353–5361, 2012.
  43. H. Young, R. Baum, U. Cremerius et al., “Measurement of clinical and subclinical tumour response using [18F]- fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations,” European Journal of Cancer, vol. 35, no. 13, pp. 1773–1782, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Boussion, C. Cheze-Le Rest, M. Hatt, and D. Visvikis, “Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 7, pp. 1064–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. B.-K. Teo, Y. Seo, S. L. Bacharach et al., “Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data,” Journal of Nuclear Medicine, vol. 48, no. 5, pp. 802–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Tylski, S. Stute, N. Grotus et al., “Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET,” Journal of Nuclear Medicine, vol. 51, no. 2, pp. 268–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Castiglioni, G. Rizzo, A. Panzacchi, M. C. Gilardi, and F. Fazio, “A MC-based PV correction method for PET/CT oncological studies,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference Record, pp. 11–153, 2005.
  48. O. G. Rousset, A. Rahmim, A. Alavi, and H. Zaidi, “Partial volume correction strategies in PET,” PET Clinics, vol. 2, no. 2, pp. 235–249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. C.-H. Chen, R. F. Muzic Jr., A. D. Nelson, and L. P. Adler, “Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data,” Journal of Nuclear Medicine, vol. 40, no. 1, pp. 118–130, 1999. View at Scopus
  50. K. Baete, J. Nuyts, K. V. Laere et al., “Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET,” NeuroImage, vol. 23, no. 1, pp. 305–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Strul and B. Bendriem, “Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 5, pp. 547–559, 1999. View at Scopus
  52. D. L. Barbee, R. T. Flynn, J. E. Holden, R. J. Nickles, and R. Jeraj, “A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function,” Physics in medicine and biology, vol. 55, no. 1, pp. 221–236, 2010. View at Scopus
  53. L. Geworski, B. O. Knoop, M. L. de Cabrejas, W. H. Knapp, and D. L. Munz, “Recovery correction for quantitation in emission tomography: a feasibility study,” European Journal of Nuclear Medicine, vol. 27, no. 2, pp. 161–169, 2000. View at Scopus