About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 782041, 10 pages
http://dx.doi.org/10.1155/2013/782041
Review Article

Recent Developments in Nanoparticle-Based siRNA Delivery for Cancer Therapy

1Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Uijeongbu 480717, Republic of Korea
2Department of Applied BioScience, CHA University, Sungnam 463836, Republic of Korea

Received 31 December 2012; Accepted 30 May 2013

Academic Editor: John B. Vincent

Copyright © 2013 Jong-Min Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. J. Hannon, “RNA interference,” Nature, vol. 418, no. 6894, pp. 244–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. P. A. Sharp, “RNAi and double-strand RNA,” Genes & Development, vol. 13, no. 2, pp. 139–141, 1999. View at Scopus
  3. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells,” Nature, vol. 411, no. 6836, pp. 494–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, “Role for a bidentate ribonuclease in the initiation step of RNA interference,” Nature, vol. 409, no. 6818, pp. 363–366, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Check, “A crucial test,” Nature Medicine, vol. 11, no. 3, pp. 243–244, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. DeVincenzo, J. E. Cehelsky, R. Alvarez et al., “Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV),” Antiviral Research, vol. 77, no. 3, pp. 225–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Aagaard and J. J. Rossi, “RNAi therapeutics: principles, prospects and challenges,” Advanced Drug Delivery Reviews, vol. 59, no. 2-3, pp. 75–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Yuan, S. Naguib, and Z. Wu, “Recent advances of siRNA delivery by nanoparticles,” Expert Opinion on Drug Delivery, vol. 8, no. 4, pp. 521–536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Burnett, J. J. Rossi, and K. Tiemann, “Current progress of siRNA/shRNA therapeutics in clinical trials,” Biotechnology Journal, vol. 6, no. 9, pp. 1130–1146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. P. Liu and B. Berkhout, “MiRNA cassettes in viral vectors: problems and solutions,” Biochimica et Biophysica Acta, vol. 1809, no. 11-12, pp. 732–745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. L. Sinn, S. L. Sauter, and P. B. McCray Jr., “Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production,” Gene Therapy, vol. 12, no. 14, pp. 1089–1098, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Wang, Z. Li, Y. Han, L. H. Liang, and A. Ji, “Nanoparticle-based delivery system for application of siRNA in vivo,” Current Drug Metabolism, vol. 11, no. 2, pp. 182–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. B. Fenske and P. R. Cullis, “Liposomal nanomedicines,” Expert Opinion on Drug Delivery, vol. 5, no. 1, pp. 25–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Elouahabi and J.-M. Ruysschaert, “Formation and intracellular trafficking of lipoplexes and polyplexes,” Molecular Therapy, vol. 11, no. 3, pp. 336–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Y. Wu and N. A. J. McMillan, “Lipidic systems for in vivo siRNA delivery,” AAPS Journal, vol. 11, no. 4, pp. 639–652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. N. Landen Jr., A. Chavez-Reyes, C. Bucana et al., “Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery,” Cancer Research, vol. 65, no. 15, pp. 6910–6918, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Halder, A. A. Kamat, C. N. Landen Jr. et al., “Focal adhesion kinasetargeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy,” Clinical Cancer Research, vol. 12, no. 16, pp. 4916–4924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Gray, G. Van Buren, N. A. Dallas et al., “Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver,” Journal of the National Cancer Institute, vol. 100, no. 2, pp. 109–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. W. M. Merritt, Y. G. Lin, W. A. Spannuth et al., “Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth,” Journal of the National Cancer Institute, vol. 100, no. 5, pp. 359–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Ozpolat, A. K. Sood, and G. Lopez-Berestein, “Nanomedicine based approaches for the delivery of siRNA in cancer,” Journal of Internal Medicine, vol. 267, no. 1, pp. 44–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Taetz, A. Bochot, C. Surace et al., “Hyaluronic acid-modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44-expressing lung cancer cells,” Oligonucleotides, vol. 19, no. 2, pp. 103–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Kostarelos, D. Emfietzoglou, A. Papakostas, W.-H. Yang, Å. Ballangrud, and G. Sgouros, “Binding and interstitial penetration of liposomes within avascular tumor spheroids,” International Journal of Cancer, vol. 112, no. 4, pp. 713–721, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Dokka, D. Toledo, X. Shi, V. Castranova, and Y. Rojanasakul, “Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes,” Pharmaceutical Research, vol. 17, no. 5, pp. 521–525, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Spagnou, A. D. Miller, and M. Keller, “Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA,” Biochemistry, vol. 43, no. 42, pp. 13348–13356, 2004. View at Scopus
  25. H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan, “Toxicity of cationic lipids and cationic polymers in gene delivery,” Journal of Controlled Release, vol. 114, no. 1, pp. 100–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Uner and G. Yener, “Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives,” International Journal of Nanomedicine, vol. 2, no. 3, pp. 289–300, 2007.
  27. A. Santel, M. Aleku, O. Keil et al., “RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy,” Gene Therapy, vol. 13, no. 18, pp. 1360–1370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Santel, M. Aleku, O. Keil et al., “A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium,” Gene Therapy, vol. 13, no. 16, pp. 1222–1234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Aleku, P. Schulz, O. Keil et al., “Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression,” Cancer Research, vol. 68, no. 23, pp. 9788–9798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Santel, M. Aleku, N. Röder et al., “Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models,” Clinical Cancer Research, vol. 16, no. 22, pp. 5469–5480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Strumberg, B. Schultheis, U. Traugott et al., “Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors,” International Journal of Clinical Pharmacology and Therapeutics, vol. 50, no. 1, pp. 76–78, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Brower, “RNA interference advances to early-stage clinical trials,” Journal of the National Cancer Institute, vol. 102, no. 19, pp. 1459–1461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. V. Morrissey, J. A. Lockridge, L. Shaw et al., “Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs,” Nature Biotechnology, vol. 23, no. 8, pp. 1002–1007, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Jin, K. H. Bae, H. Yang et al., “In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles,” Bioconjugate Chemistry, vol. 22, no. 12, pp. 2568–2572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. L. B. Jeffs, L. R. Palmer, E. G. Ambegia, C. Giesbrecht, S. Ewanick, and I. MacLachlan, “A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA,” Pharmaceutical Research, vol. 22, no. 3, pp. 362–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. S. Zimmermann, A. C. H. Lee, A. Akinc et al., “RNAi-mediated gene silencing in non-human primates,” Nature, vol. 441, no. 7089, pp. 111–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. D. Judge, M. Robbins, I. Tavakoli et al., “Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 661–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Shen, T. Sun, and M. Ferrari, “Nanovector delivery of siRNA for cancer therapy,” Cancer Gene Therapy, vol. 19, no. 6, pp. 367–373, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Akinc, A. Zumbuehl, M. Goldberg et al., “A combinatorial library of lipid-like materials for delivery of RNAi therapeutics,” Nature Biotechnology, vol. 26, no. 5, pp. 561–569, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Akinc, M. Goldberg, J. Qin et al., “Development of lipidoid-sirna formulations for systemic delivery to the liver,” Molecular Therapy, vol. 17, no. 5, pp. 872–879, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. T. Love, K. P. Mahon, C. G. Levins et al., “Lipid-like materials for low-dose, in vivo gene silencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 1864–1869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. P. Egusquiaguirre, M. Igartua, R. M. Hernandez, and J. L. Pedraz, “Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research,” Clinical and Translational Oncology, vol. 14, no. 2, pp. 83–93, 2012.
  43. M. E. Davis and M. E. Brewster, “Cyclodextrin-based pharmaceutics: past, present and future,” Nature Reviews Drug Discovery, vol. 3, no. 12, pp. 1023–1035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche, “Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma,” Cancer Research, vol. 65, no. 19, pp. 8984–8992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. E. Davis, J. E. Zuckerman, C. H. J. Choi et al., “Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles,” Nature, vol. 464, no. 7291, pp. 1067–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. K. A. Howard, U. L. Rahbek, X. Liu et al., “RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system,” Molecular Therapy, vol. 14, no. 4, pp. 476–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Liu, K. A. Howard, M. Dong et al., “The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing,” Biomaterials, vol. 28, no. 6, pp. 1280–1288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Jean, F. Smaoui, M. Lavertu et al., “Chitosan-plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies,” Gene Therapy, vol. 16, no. 9, pp. 1097–1110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Katas and H. O. Alpar, “Development and characterisation of chitosan nanoparticles for siRNA delivery,” Journal of Controlled Release, vol. 115, no. 2, pp. 216–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Alameh, D. Dejesus, M. Jean, et al., “Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery,” International Journal of Nanomedicine, vol. 7, pp. 1399–1414, 2012.
  51. Z. W. Wu, C. T. Chien, C. Y. Liu, J. Y. Yan, and S. Y. Lin, “Recent progress in copolymer-mediated siRNA delivery,” Journal of Drug Targeting, vol. 20, no. 7, pp. 551–560, 2012.
  52. O. M. Merkel, A. Beyerle, B. M. Beckmann et al., “Polymer-related off-target effects in non-viral siRNA delivery,” Biomaterials, vol. 32, no. 9, pp. 2388–2398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk, “A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy,” Molecular Therapy, vol. 11, no. 6, pp. 990–995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. C. Hunter and S. M. Moghimi, “Cationic carriers of genetic material and cell death: a mitochondrial tale,” Biochimica et Biophysica Acta, vol. 1797, no. 6-7, pp. 1203–1209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. K. A. Woodrow, Y. Cu, C. J. Booth, J. K. Saucier-Sawyer, M. J. Wood, and W. M. Saltzman, “Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA,” Nature Materials, vol. 8, no. 6, pp. 526–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Singha, R. Namgung, and W. J. Kim, “Polymers in small-interfering RNA delivery,” Nucleic Acid Therapeutics, vol. 21, no. 3, pp. 133–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Kesharwani, R. K. Tekade, V. Gajbhiye, K. Jain, and N. K. Jain, “Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison,” Nanomedicine, vol. 7, no. 3, pp. 295–304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J.-H. Lee, K. E. Cha, M. S. Kim et al., “Nanosized polyamidoamine (PAMAM) dendrimer-induced apoptosis mediated by mitochondrial dysfunction,” Toxicology Letters, vol. 190, no. 2, pp. 202–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. L. Patil, M. Zhang, O. Taratula, O. B. Garbuzenko, H. He, and T. Minko, “Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of Quaternization and cancer targeting,” Biomacromolecules, vol. 10, no. 2, pp. 258–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. O. Taratula, O. B. Garbuzenko, P. Kirkpatrick et al., “Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery,” Journal of Controlled Release, vol. 140, no. 3, pp. 284–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Agrawal, D.-H. Min, N. Singh et al., “Functional delivery of siRNA in mice using dendriworms,” ACS Nano, vol. 3, no. 9, pp. 2495–2504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Pantarotto, R. Singh, D. McCarthy et al., “Functionalized carbon nanotubes for plasmid DNA gene delivery,” Angewandte Chemie, vol. 43, no. 39, pp. 5242–5246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Cai, J. M. Mataraza, Z.-H. Qin et al., “Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing,” Nature Methods, vol. 2, no. 6, pp. 449–454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Kesharwani, V. Gajbhiye, and N. K. Jain, “A review of nanocarriers for the delivery of small interfering RNA,” Biomaterials, vol. 33, no. 29, pp. 7138–7150, 2012.
  65. Z. Zhang, X. Yang, Y. Zhang et al., “Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth,” Clinical Cancer Research, vol. 12, no. 16, pp. 4933–4939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. Z. Liu, M. Winters, M. Holodniy, and H. Dai, “siRNA delivery into human T cells and primary cells with carbon-nanotube transporters,” Angewandte Chemie, vol. 46, no. 12, pp. 2023–2027, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Wang, J. Wang, X. Deng et al., “Biodistribution of carbon single-wall carbon nanotubes in mice,” Journal of Nanoscience and Nanotechnology, vol. 4, no. 8, pp. 1019–1024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. K. T. Al-Jamal, F. M. Toma, A. Yilmazer et al., “Enhanced cellular internalization and gene silencing with a series of cationic dendron-multiwalled carbon nanotube:siRNA complexes,” FASEB Journal, vol. 24, no. 11, pp. 4354–4365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. E. Podesta, K. T. Al-Jamal, M. A. Herrero et al., “Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic sirna silencing in a human lung xenograft model,” Small, vol. 5, no. 10, pp. 1176–1185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. A. A. Shvedova, E. R. Kisin, D. Porter et al., “Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus?” Pharmacology & Therapeutics, vol. 121, no. 2, pp. 192–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. C. P. Firme III and P. R. Bandaru, “Toxicity issues in the application of carbon nanotubes to biological systems,” Nanomedicine, vol. 6, no. 2, pp. 245–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Yu and D. Sun, “Superparamagnetic iron oxide nanoparticle 'theranostics' for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery,” Expert Review of Clinical Pharmacology, vol. 3, no. 1, pp. 117–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. X.-H. Peng, X. Qian, H. Mao et al., “Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy,” International Journal of Nanomedicine, vol. 3, no. 3, pp. 311–321, 2008. View at Scopus
  74. Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nature Medicine, vol. 13, no. 3, pp. 372–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. J.-H. Lee, K. Lee, S. H. Moon, Y. Lee, T. G. Park, and J. Cheon, “All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery,” Angewandte Chemie, vol. 48, no. 23, pp. 4174–4179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. Y.-S. Cho, T.-J. Yoon, E.-S. Jang et al., “Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging,” Cancer Letters, vol. 299, no. 1, pp. 63–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. A. M. Smith, H. Duan, A. M. Mohs, and S. Nie, “Bioconjugated quantum dots for in vivo molecular and cellular imaging,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1226–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. A. M. Derfus, A. A. Chen, D.-H. Min, E. Ruoslahti, and S. N. Bhatia, “Targeted quantum dot conjugates for siRNA delivery,” Bioconjugate Chemistry, vol. 18, no. 5, pp. 1391–1396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. W. B. Tan, S. Jiang, and Y. Zhang, “Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference,” Biomaterials, vol. 28, no. 8, pp. 1565–1571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. M. V. Yezhelyev, L. Qi, R. M. O'Regan, S. Nie, and X. Gao, “Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging,” Journal of the American Chemical Society, vol. 130, no. 28, pp. 9006–9012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Su, Y. He, H. Lu et al., “The cytotoxicity of cadmium based, aqueous phase—synthesized, quantum dots and its modulation by surface coating,” Biomaterials, vol. 30, no. 1, pp. 19–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Subramaniam, S. J. Lee, S. Shah, S. Patel, V. Starovoytov, and K. B. Lee, “Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery,” Advanced Materials, vol. 24, no. 29, pp. 4014–4019, 2012.
  83. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1307–1315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-Jean, M. S. Han, and C. A. Mirkin, “Oligonucleotide-modified gold nanoparticles for infracellular gene regulation,” Science, vol. 312, no. 5776, pp. 1027–1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. W. H. Kong, K. H. Bae, S. D. Jo, J. S. Kim, and T. G. Park, “Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles,” Pharmaceutical Research, vol. 29, no. 2, pp. 362–374, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. A. C. Bonoiu, S. D. Mahajan, H. Ding et al., “Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5546–5550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. E.-Y. Kim, R. Schulz, P. Swantek, K. Kunstman, M. H. Malim, and S. M. Wolinsky, “Gold nanoparticle-mediated gene delivery induces widespread changes in the expression of innate immunity genes,” Gene Therapy, vol. 19, no. 3, pp. 347–353, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. E. Song, P. Zhu, S.-K. Lee et al., “Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors,” Nature Biotechnology, vol. 23, no. 6, pp. 709–717, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Kumar, H.-S. Ban, S.-S. Kim et al., “T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice,” Cell, vol. 134, no. 4, pp. 577–586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. J. O. McNamara II, E. R. Andrechek, Y. Wang et al., “Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras,” Nature Biotechnology, vol. 24, no. 8, pp. 1005–1015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Guo, O. Coban, N. M. Snead et al., “Engineering rna for targeted sirna delivery and medical application,” Advanced Drug Delivery Reviews, vol. 62, no. 6, pp. 650–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Abdelmawla, S. Guo, L. Zhang et al., “Pharmacological characterization of chemically synthesized monomeric phi29 pRNA nanoparticles for systemic delivery,” Molecular Therapy, vol. 19, no. 7, pp. 1312–1322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Shu, Y. Shu, F. Haque, S. Abdelmawla, and P. Guo, “Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics,” Nature Nanotechnology, vol. 6, no. 10, pp. 658–667, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Haque, D. Shu, Y. Shu, et al., “Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers,” Nano Today, vol. 7, no. 4, pp. 245–257, 2012.
  95. B. R. Meade and S. F. Dowdy, “Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides,” Advanced Drug Delivery Reviews, vol. 59, no. 2-3, pp. 134–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. S. A. Moschos, S. W. Jones, M. M. Perry et al., “Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity,” Bioconjugate Chemistry, vol. 18, no. 5, pp. 1450–1459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. S. Cho, G. Y. Lee, H. K. Sajja, et al., “Targeted delivery of siRNA-generating DNA nanocassettes using multifunctional nanoparticles,” Small, 2013. View at Publisher · View at Google Scholar
  98. B. S. Nielsen, F. Rank, M. Illemann, L. R. Lund, and K. Danø, “Stromal cells associated with early invasive foci in human mammary ductal carcinoma in situ coexpress urokinase and urokinase receptor,” International Journal of Cancer, vol. 120, no. 10, pp. 2086–2095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. F. Blasi and P. Carmeliet, “uPAR: a versatile signalling orchestrator,” Nature Reviews Molecular Cell Biology, vol. 3, no. 12, pp. 932–943, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. A. L. Jackson, S. R. Bartz, J. Schelter et al., “Expression profiling reveals off-target gene regulation by RNAi,” Nature Biotechnology, vol. 21, no. 6, pp. 635–637, 2003. View at Publisher · View at Google Scholar · View at Scopus