About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 783131, 16 pages
http://dx.doi.org/10.1155/2013/783131
Review Article

Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, Maharashtra 411007, India

Received 30 November 2012; Accepted 30 January 2013

Academic Editor: Sachidanand Pandey

Copyright © 2013 Debasish Paul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Etzioni, N. Urban, S. Ramsey et al., “The case for early detection,” Nature Reviews Cancer, vol. 3, no. 4, pp. 243–252, 2003. View at Scopus
  2. V. Kulasingam and E. P. Diamandis, “Strategies for discovering novel cancer biomarkers through utilization of emerging technologies,” Nature Clinical Practice Oncology, vol. 5, no. 10, pp. 588–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. F. Hayes, R. C. Bast, C. E. Desch et al., “Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers,” Journal of the National Cancer Institute, vol. 88, no. 20, pp. 1456–1466, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Minamida, M. Iwamura, Y. Kodera et al., “Profilin 1 overexpression in renal cell carcinoma,” International Journal of Urology, vol. 18, no. 1, pp. 63–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Xu, M. Qiao, Y. Zhang et al., “Quantitative proteomics study of breast cancer cell lines isolated from a single patient: discovery of TIMM17A as a marker for breast cancer,” Proteomics, vol. 10, no. 7, pp. 1374–1390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Kulasingam and E. P. Diamandis, “Tissue culture-based breast cancer biomarker discovery platform,” International Journal of Cancer, vol. 123, no. 9, pp. 2007–2012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Charafe-Jauffret, C. Ginestier, F. Monville et al., “Gene expression profiling of breast cell lines identifies potential new basal markers,” Oncogene, vol. 25, no. 15, pp. 2273–2284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Neve, K. Chin, J. Fridlyand et al., “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell, vol. 10, no. 6, pp. 515–527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. S. Boja and H. Rodriguez, “Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins,” Proteomics, vol. 12, no. 8, pp. 1093–1110, 2012. View at Publisher · View at Google Scholar
  10. G. L. Glish and R. W. Vachet, “The basics of mass spectrometry in the twenty-first century,” Nature Reviews Drug Discovery, vol. 2, no. 2, pp. 140–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. F. Cravatt, G. M. Simon, and J. R. Yates III, “The biological impact of mass spectrometry-based proteomics,” Nature, vol. 450, no. 7172, pp. 991–1000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Y. Chen, L. M. Chi, H. C. Chi et al., “Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics study of a thyroid hormone-regulated secretome in human hepatoma cells,” Molecular and Cellular Proteomics, vol. 11, no. 4, Article ID M111.011270, 2012. View at Publisher · View at Google Scholar
  13. S. Leong, M. J. McKay, R. I. Christopherson, and R. C. Baxter, “Biomarkers of breast cancer apoptosis induced by chemotherapy and TRAIL,” Journal of Proteome Research, vol. 11, no. 2, pp. 1240–1250, 2012. View at Publisher · View at Google Scholar
  14. G. Q. Zeng, P. F. Zhang, C. Li et al., “Comparative proteome analysis of human lung squamous carcinoma using two different methods: two-dimensional gel electrophoresis and iTRAQ analysis,” Technology in Cancer Research and Treatment, vol. 11, no. 4, pp. 395–408, 2012.
  15. P. Meleady, “2D gel electrophoresis and mass spectrometry identification and analysis of proteins,” Methods in Molecular Biology, vol. 784, pp. 123–137, 2011. View at Publisher · View at Google Scholar
  16. J. F. Timms and R. Cramer, “Difference gel electrophoresis,” Proteomics, vol. 8, no. 23-24, pp. 4886–4897, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Mann, “Functional and quantitative proteomics using SILAC,” Nature Reviews Molecular Cell Biology, vol. 7, no. 12, pp. 952–958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. L. Ross, Y. N. Huang, J. N. Marchese et al., “Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents,” Molecular and Cellular Proteomics, vol. 3, no. 12, pp. 1154–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. P. Benesch, B. T. Ruotolo, D. A. Simmons, and C. V. Robinsons, “Protein complexes in the gas phase: technology for structural genomics and proteomics,” Chemical Reviews, vol. 107, no. 8, pp. 3544–3567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. F. M. Altelaar, S. L. Luxembourg, L. A. McDonnell, S. R. Piersma, and R. M. A. Heeren, “Imaging mass spectrometry at cellular length scales,” Nature Protocols, vol. 2, no. 5, pp. 1185–1196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Schirle, M. Bantscheff, and B. Kuster, “Mass spectrometry-based proteomics in preclinical drug discovery,” Chemistry and Biology, vol. 19, no. 1, pp. 72–84, 2012. View at Publisher · View at Google Scholar
  22. M. Zhu, H. Zhang, and W. G. Humphreys, “Drug metabolite profiling and identification by high-resolution mass spectrometry,” The Journal of Biological Chemistry, vol. 286, no. 29, pp. 25419–25425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Zhang, S. Chen, and L. Huang, “Proteomics-based identification of proapoptotic caspase adapter protein as a novel serum marker of non-small cell lung cancer,” Chinese Journal of Lung Cancer, vol. 15, no. 5, pp. 287–293, 2012. View at Publisher · View at Google Scholar
  24. X. Lou, T. Xiao, K. Zhao et al., “Cathepsin D is secreted from M-BE cells: Its potential role as a biomarker of lung cancer,” Journal of Proteome Research, vol. 6, no. 3, pp. 1083–1092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. H. Elliott, D. S. Smith, C. E. Parker, and C. Borchers, “Current trends in quantitative proteomics,” Journal of Mass Spectrometry, vol. 44, no. 12, pp. 1637–1660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Di Girolamo, F. Del Chierico, G. Caenaro, I. Lante, M. Muraca, and L. Putignani, “Human serum proteome analysis: new source of markers in metabolic disorders,” Biomarkers in Medicine, vol. 6, no. 6, pp. 759–773, 2012. View at Publisher · View at Google Scholar
  27. E. P. Rhee and R. E. Gerszten, “Metabolomics and cardiovascular biomarker discovery,” Clinical Chemistry, vol. 58, no. 1, pp. 139–147, 2012. View at Publisher · View at Google Scholar
  28. F. Bertucci, D. Birnbaum, and A. Goncalves, “Proteomics of breast cancer: principles and potential clinical applications,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1772–1786, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Braun, M. Fountoulakis, A. Papadopoulou et al., “Down-regulation of microfilamental network-associated proteins in leukocytes of breast cancer patients: potential application to predictive diagnosis,” Cancer Genomics and Proteomics, vol. 6, no. 1, pp. 31–40, 2009. View at Scopus
  30. P. Cancemi, G. Di Cara, N. N. Albanese et al., “Large-scale proteomic identification of S100 proteins in breast cancer tissues,” BMC Cancer, vol. 10, article 476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Strong, T. Nakanishi, D. Ross, and C. Fenselau, “Alterations in the mitochondrial proteome of adriamycin resistant MCF-7 breast cancer cells,” Journal of Proteome Research, vol. 5, no. 9, pp. 2389–2395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. H. Lee, K. Chung, J. A. Song et al., “Proteomic identification of paclitaxel-resistance associated hnRNP A2 and GDI 2 proteins in human ovarian cancer cells,” Journal of Proteome Research, vol. 9, no. 11, pp. 5668–5676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Rabilloud and C. Lelong, “Two-dimensional gel electrophoresis in proteomics: a tutorial,” Journal of Proteomics, vol. 74, no. 10, pp. 1829–1841, 2011. View at Publisher · View at Google Scholar
  34. J. X. Yan, A. T. Devenish, R. Wait, T. Stone, S. Lewis, and S. Fowler, “Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli,” Proteomics, vol. 2, no. 12, pp. 1682–1698, 2002. View at Publisher · View at Google Scholar
  35. S. C. Wong, C. M. L. Chan, B. B. Y. Ma et al., “Advanced proteomic technologies for cancer biomarker discovery,” Expert Review of Proteomics, vol. 6, no. 2, pp. 123–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Blonder, H. J. Issaq, and T. D. Veenstra, “Proteomic biomarker discovery: it's more than just mass spectrometry,” Electrophoresis, vol. 32, no. 13, pp. 1541–1548, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Zhang, M. Q. Song, J. S. Zhu et al., “Identification of differentially-expressed proteins between early submucosal non-invasive and invasive colorectal cancer using 2D-dige and mass spectrometry,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 4, pp. 849–859, 2011.
  38. F. Tan, Y. Jiang, N. Sun et al., “Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis.,” Molecular & cellular proteomics : MCP, vol. 11, no. 2, Article ID M111.008821, 2012. View at Publisher · View at Google Scholar
  39. H. N. Banerjee, K. Mahaffey, E. Riddick, A. Banerjee, N. Bhowmik, and M. Patra, “Search for a diagnostic/prognostic biomarker for the brain cancer glioblastoma multiforme by 2D-DIGE-MS technique,” Molecular and Cellular Biochemistry, vol. 367, no. 1-2, pp. 59–63, 2012. View at Publisher · View at Google Scholar
  40. J. Sinclair, G. Metodieva, D. Dafou, S. A. Gayther, and J. F. Timms, “Profiling signatures of ovarian cancer tumour suppression using 2D-DIGE and 2D-LC-MS/MS with tandem mass tagging,” Journal of Proteomics, vol. 74, no. 4, pp. 451–465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Wilmes, A. Chan, P. Rawson, T. W. Jordan, and J. H. Miller, “Paclitaxel effects on the proteome of HL-60 promyelocytic leukemic cells: comparison to peloruside A,” Investigational New Drugs, vol. 30, no. 1, pp. 121–129, 2012. View at Publisher · View at Google Scholar
  42. S. E. Ong, B. Blagoev, I. Kratchmarova et al., “Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics,” Molecular and Cellular Proteomics, vol. 1, no. 5, pp. 376–386, 2002. View at Scopus
  43. T. Geiger, S. F. Madden, W. M. Gallagher, J. Cox, and M. Mann, “Proteomic portrait of human breast cancer progression identifies novel prognostic markers,” Cancer Research, vol. 72, no. 9, pp. 2428–2439, 2012. View at Publisher · View at Google Scholar
  44. M. K. Kashyap, H. C. Harsha, S. Renuse et al., “SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome,” Cancer Biology and Therapy, vol. 10, no. 8, pp. 796–810, 2010. View at Publisher · View at Google Scholar
  45. C. I. Wang, K. Y. Chien, C. L. Wang et al., “Quantitative proteomics reveals regulation of KPNA2 and its potential novel cargo proteins in non-small cell lung cancer,” Molecular and Cellular Proteomics, vol. 11, no. 11, pp. 1105–1122, 2012. View at Publisher · View at Google Scholar
  46. A. Cuomo, S. Moretti, S. Minucci, and T. Bonaldi, “SILAC-based proteomic analysis to dissect the “histone modification signature” of human breast cancer cells,” Amino Acids, vol. 41, no. 2, pp. 387–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Krüger, M. Moser, S. Ussar et al., “SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function,” Cell, vol. 134, no. 2, pp. 353–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. E. Ong and M. Mann, “Mass spectrometry-based proteomics turns quantitative,” Nature chemical biology, vol. 1, no. 5, pp. 252–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Ishihama, T. Sato, T. Tabata et al., “Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards,” Nature Biotechnology, vol. 23, no. 5, pp. 617–621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Geiger, J. Cox, P. Ostasiewicz, J. R. Wisniewski, and M. Mann, “Super-SILAC mix for quantitative proteomics of human tumor tissue,” Nature Methods, vol. 7, no. 5, pp. 383–385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. P. J. Boersema, T. Geiger, J. R. Wiśniewski, and M. Mann, “Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood samples,” Molecular and Cellular Proteomics, vol. 12, no. 1, pp. 158–171, 2013. View at Publisher · View at Google Scholar
  52. R. R. Lund, M. G. Terp, A.-V. Lænkholm, O. N. Jensen, R. Leth-Larsen, and H. J. Ditzel, “Quantitative proteomics of primary tumors with varying metastatic capabilities using stable isotope-labeled proteins of multiple histogenic origins,” Proteomics, vol. 12, no. 13, pp. 2139–2148, 2012. View at Publisher · View at Google Scholar
  53. Y. T. Chen, C. L. Chen, H. W. Chen et al., “Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology,” Journal of Proteome Research, vol. 9, no. 11, pp. 5803–5815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Hao, T. Guo, X. Li et al., “Novel application of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) in shotgun proteomics: comprehensive profiling of rat kidney proteome,” Journal of Proteome Research, vol. 9, no. 7, pp. 3520–3526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Elschenbroich, V. Ignatchenko, P. Sharma, G. Schmitt-Ulms, A. O. Gramolini, and T. Kislinger, “Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells,” Journal of Proteome Research, vol. 8, no. 10, pp. 4860–4869, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. L. V. DeSouza, A. D. Romaschin, T. J. Colgan, and K. W. M. Siu, “Absolute quantification of potential cancer markers in clinical tissue homogenates using multiple reaction monitoring on a hybrid triple quadrupole/linear ion trap tandem mass spectrometer,” Analytical Chemistry, vol. 81, no. 9, pp. 3462–3470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Rehman, C. A. Evans, A. Glen et al., “iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer,” PLoS ONE, vol. 7, no. 2, Article ID e30885, 2012. View at Publisher · View at Google Scholar
  58. D. Ghosh, H. Yu, X. F. Tan et al., “Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines,” Journal of Proteome Research, vol. 10, no. 10, pp. 4373–4387, 2011. View at Publisher · View at Google Scholar
  59. Y. Chen, L. Y. Choong, Q. Lin et al., “Differential expression of novel tyrosine kinase substrates during breast cancer development,” Molecular and Cellular Proteomics, vol. 6, no. 12, pp. 2072–2087, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Chelius and P. V. Bondarenko, “Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry,” Journal of Proteome Research, vol. 1, no. 4, pp. 317–323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. W. Zhu, J. W. Smith, and C. M. Huang, “Mass spectrometry-based label-free quantitative proteomics,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 840518, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Ishihara, I. Fukuda, A. Morita et al., “Development of quantitative plasma N-glycoproteomics using label-free 2-D LC-MALDI MS and its applicability for biomarker discovery in hepatocellular carcinoma,” Journal of Proteomics, vol. 74, no. 10, pp. 2159–2168, 2011.
  63. W. M. Old, K. Meyer-Arendt, L. Aveline-Wolf et al., “Comparison of label-free methods for quantifying human proteins by shotgun proteomics,” Molecular and Cellular Proteomics, vol. 4, no. 10, pp. 1487–1502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. S. P. Mirza and M. Olivier, “Methods and approaches for the comprehensive characterization and quantification of cellular proteomes using mass spectrometry,” Physiological Genomics, vol. 33, no. 1, pp. 3–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Brun, C. Masselon, J. Garin, and A. Dupuis, “Isotope dilution strategies for absolute quantitative proteomics,” Journal of Proteomics, vol. 72, no. 5, pp. 740–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. A. D. Kippen, F. Cerini, L. Vadas et al., “Development of an isotope dilution assay for precise determination of insulin, C-peptide, and proinsulin levels in non-diabetic and type II diabetic individuals with comparison to immunoassay,” The Journal of Biological Chemistry, vol. 272, no. 19, pp. 12513–12522, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi, “Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 6940–6945, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. M. A. Kuzyk, D. Smith, J. Yang et al., “Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma,” Molecular and Cellular Proteomics, vol. 8, no. 8, pp. 1860–1877, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Jiang, A. A. Ramos, and X. Yao, “Targeted quantitation of overexpressed and endogenous cystic fibrosis transmembrane conductance regulator using multiple reaction monitoring tandem mass spectrometry and oxygen stable isotope dilution,” Analytical Chemistry, vol. 82, no. 1, pp. 336–342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. K. H. Yu, C. G. Barry, D. Austin et al., “Stable isotope dilution multidimensional liquid chromatography-tandem mass spectrometry for pancreatic cancer serum biomarker discovery,” Journal of Proteome Research, vol. 8, no. 3, pp. 1565–1576, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. D. R. Barnidge, M. K. Goodmanson, G. G. Klee, and D. C. Muddiman, “Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-MS/MS using protein cleavage and isotope dilution mass spectrometry,” Journal of Proteome Research, vol. 3, no. 3, pp. 644–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Keshishian, T. Addona, M. Burgess et al., “Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution,” Molecular and Cellular Proteomics, vol. 8, no. 10, pp. 2339–2349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular and Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002. View at Scopus
  74. Y. Hathout, “Approaches to the study of the cell secretome,” Expert Review of Proteomics, vol. 4, no. 2, pp. 239–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Dowling and M. Clynes, “Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers,” Proteomics, vol. 11, no. 4, pp. 794–804, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Sardana, K. Jung, C. Stephan, and E. P. Diamandis, “Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers,” Journal of Proteome Research, vol. 7, no. 8, pp. 3329–3338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. R. L. Shreeve, R. E. Banks, P. J. Selby, and N. S. Vasudev, “Proteomic study of conditioned media: cancer biomarker discovery,” International Journal of Genomics and Proteomics, vol. 3, no. 1, pp. 50–56, 2012.
  78. Y. Wang, S. J. Li, X. Wu, Y. Che, and Q. Li, “Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer,” The Journal of Biological Chemistry, vol. 287, no. 17, pp. 13877–13888, 2012. View at Publisher · View at Google Scholar
  79. Y. Wang, S. J. Li, J. Pan, Y. Che, J. Yin, and Q. Zhao, “Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis,” Biochemical and Biophysical Research Communications, vol. 412, no. 2, pp. 353–359, 2011. View at Publisher · View at Google Scholar
  80. M. C. Hinestrosa, K. Dickersin, P. Klein et al., “Shaping the future of biomarker research in breast cancer to ensure clinical relevance,” Nature Reviews Cancer, vol. 7, no. 4, pp. 309–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. E. K. Jung, H. K. Kyung, H. K. Yeul, J. Sohn, and G. P. Yun, “Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model,” Experimental and Molecular Medicine, vol. 40, no. 6, pp. 709–720, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. K. M. Yamada and E. Cukierman, “Modeling tissue morphogenesis and cancer in 3D,” Cell, vol. 130, no. 4, pp. 601–610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. U. Kruse, M. Bantscheff, G. Drewes, and C. Hopf, “Chemical and pathway proteomics: powerful tools for oncology drug discovery and personalized health care,” Molecular and Cellular Proteomics, vol. 7, no. 10, pp. 1887–1901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. J. M. Lee, J. J. Han, G. Altwerger, and E. C. Kohn, “Proteomics and biomarkers in clinical trials for drug development,” Journal of Proteomics, vol. 74, no. 12, pp. 2632–2641, 2011. View at Publisher · View at Google Scholar
  85. E. E. Balashova, M. I. Dashtiev, and P. G. Lokhov, “Proteomic footprinting of drug-treated cancer cells as a measure of cellular vaccine efficacy for the prevention of cancer recurrence,” Molecular and Cellular Proteomics, vol. 11, no. 2, Article ID M111.014480, 2012. View at Publisher · View at Google Scholar
  86. E. K. Yim, J. S. Bae, S. B. Lee et al., “Proteome analysis of differential protein expression in cervical cancer cells after paclitaxel treatment,” Cancer Research and Treatment, vol. 36, no. 6, pp. 395–399, 2004. View at Publisher · View at Google Scholar
  87. K. O'Connell, M. Prencipe, A. O'Neill et al., “The use of LC-MS to identify differentially expressed proteins in docetaxel-resistant prostate cancer cell lines,” Proteomics, vol. 12, no. 13, pp. 2115–2126, 2012. View at Publisher · View at Google Scholar
  88. Y. Liu, H. Liu, B. Han, and J. T. Zhang, “Identification of 14-3-3σ as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis,” Cancer Research, vol. 66, no. 6, pp. 3248–3255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Murphy, M. Henry, P. Meleady, M. Clynes, and J. Keenan, “Proteomic investigation of taxol and taxotere resistance and invasiveness in a squamous lung carcinoma cell line,” Biochimica et Biophysica Acta, vol. 1784, no. 9, pp. 1184–1191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. S. L. Li, F. Ye, W. J. Cai et al., “Quantitative proteome analysis of multidrug resistance in human ovarian cancer cell line,” Journal of Cellular Biochemistry, vol. 109, no. 4, pp. 625–633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. N. P. Chappell, P. N. Teng, B. L. Hood et al., “Mitochondrial proteomic analysis of cisplatin resistance in ovarian cancer,” Journal of Proteome Research, vol. 11, no. 9, pp. 4605–4614, 2012. View at Publisher · View at Google Scholar
  92. X. Qian, C. Li, B. Pang, M. Xue, J. Wang, and J. Zhou, “Spondin-2 (SPON2), a more prostate-cancer-specific diagnostic biomarker,” PLoS ONE, vol. 7, no. 5, Article ID e37225, 2012. View at Publisher · View at Google Scholar
  93. H. Loei, H. T. Tan, T. K. Lim et al., “Mining the gastric cancer secretome: identification of GRN as a potential diagnostic marker for early gastric cancer,” Journal of Proteome Research, vol. 11, no. 3, pp. 1759–1772, 2012. View at Publisher · View at Google Scholar
  94. S. Makawita, C. Smith, I. Batruch et al., “Integrated proteomic profiling of cell line conditioned media and pancreatic juice for the identification of pancreatic cancer biomarkers,” Molecular and Cellular Proteomics, vol. 10, no. 10, Article ID M111.008599, 2011. View at Publisher · View at Google Scholar
  95. L. Yao, W. Lao, Y. Zhang et al., “Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues,” Journal of Proteomic Research, vol. 11, no. 6, pp. 3281–3294, 2012. View at Publisher · View at Google Scholar
  96. R. Ralhan, O. Masui, L. V. Desouza, A. Matta, M. Macha, and K. W. M. Siu, “Identification of proteins secreted by head and neck cancer cell lines using LC-MS/MS: strategy for discovery of candidate serological biomarkers,” Proteomics, vol. 11, no. 12, pp. 2363–2376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. L. P. Weng, C. C. Wu, B. L. Hsu et al., “Secretome-based identification of Mac-2 binding protein as a potential oral cancer marker involved in cell growth and motility,” Journal of Proteome Research, vol. 7, no. 9, pp. 3765–3775, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. C. J. Yu, K. P. Chang, Y. J. Chang et al., “Identification of guanylate-binding protein 1 as a potential oral cancer marker involved in cell invasion using omics-based analysis,” Journal of Proteome Research, vol. 10, no. 8, pp. 3778–3788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. J. Xue, R. H. Xiao, D. Z. Long et al., “Overexpression of FoxM1 is associated with tumor progression in patients with clear cell renal cell carcinoma,” Journal of Translational Medicine, vol. 10, article 200, 2012. View at Publisher · View at Google Scholar
  100. Y. X. Zheng, M. Yang, T. T. Rong et al., “CD74 and macrophage migration inhibitory factor as therapeutic targets in gastric cancer,” World Journal of Gastroenterology, vol. 18, no. 18, pp. 2253–2261, 2012. View at Publisher · View at Google Scholar
  101. S. Chakraborty, S. Kaur, S. Guha, and S. K. Batra, “The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer,” Biochimical and Biophysical Acta, no. 1, pp. 129–169, 1826. View at Publisher · View at Google Scholar
  102. H. Lee, M. Song, N. Shin et al., “Diagnostic significance of serum HMGB1 in colorectal carcinomas,” PLoS ONE, vol. 7, no. 4, Article ID e34318, 2012. View at Publisher · View at Google Scholar
  103. M. Akdogan, N. Sasmaz, B. Kayhan, I. Biyikoglu, S. Disibeyaz, and B. Sahin, “Extraordinarily elevated CA19-9 in benign conditions: a case report and review of the literature,” Tumori, vol. 87, no. 5, pp. 337–339, 2001.
  104. P. G. Righetti, A. Castagna, F. Antonucci et al., “The proteome: anno domini 2002,” Clinical Chemistry and Laboratory Medicine, vol. 41, no. 4, pp. 425–438, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. C. I. Wang, C. L. Wang, C. W. Wang et al., “Importin subunit alpha-2 is identified as a potential biomarker for non-small cell lung cancer by integration of the cancer cell secretome and tissue transcriptome,” International Journal of Cancer, vol. 128, no. 10, pp. 2364–2372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. V. Kulasingam and E. P. Diamandis, “Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets,” Molecular and Cellular Proteomics, vol. 6, no. 11, pp. 1997–2011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. N. Ahmed, K. Oliva, G. E. Rice, and M. A. Quinn, “Cell-free 59 kDa immunoreactive integrin-linked kinase: a novel marker for ovarian carcinoma,” Clinical Cancer Research, vol. 10, no. 7, pp. 2415–2420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. J. T. Hsieh, H. C. Wu, M. E. Gleave, A. C. von Eschenbach, and L. W. K. Chung, “Autocrine regulation of prostate-specific antigen gene expression in a human prostatic cancer (LNCaP) subline,” Cancer Research, vol. 53, no. 12, pp. 2852–2857, 1993. View at Scopus
  109. L. M. Mikesh, M. Kumar, G. Erdag et al., “Evaluation of molecular markers of mesenchymal phenotype in melanoma,” Melanoma Research, vol. 20, no. 6, pp. 485–495, 2010. View at Publisher · View at Google Scholar
  110. R. Sadej, H. Romanska, G. Baldwin et al., “CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium,” Molecular Cancer Research, vol. 7, no. 6, pp. 787–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. D. G. Lee, J. H. Lee, B. K. Choi et al., “H+-myo-inositol transporter SLC2A13 as a potential marker for cancer stem cells in an oral squamous cell carcinoma,” Current Cancer Drug Targets, vol. 11, no. 8, pp. 966–975, 2011. View at Publisher · View at Google Scholar
  112. R. C. Bast Jr., T. L. Klug, E. St John et al., “A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer,” The New England Journal of Medicine, vol. 309, no. 15, pp. 883–887, 1983. View at Scopus