About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 784591, 16 pages
http://dx.doi.org/10.1155/2013/784591
Review Article

The Microbiology of Olive Mill Wastes

1Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece
2Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Street, 30100 Agrinio, Greece

Received 30 March 2013; Revised 18 July 2013; Accepted 22 July 2013

Academic Editor: Ameur Cherif

Copyright © 2013 Spyridon Ntougias et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Morillo, M. Aguilera, B. Antízar-Ladislao et al., “Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors,” Applied Microbiology and Biotechnology, vol. 79, no. 2, pp. 309–317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. International Olive Oil Council, 2008, http://www.internationaloliveoil.org/.
  3. M. Uceda, A. Jiménez, and G. Beltrán, “Olive oil extraction and quality,” Grasas y Aceites, vol. 57, no. 1, pp. 25–31, 2006. View at Scopus
  4. S. Ntougias, G. I. Zervakis, C. Ehaliotis, N. Kavroulakis, and K. K. Papadopoulou, “Ecophysiology and molecular phylogeny of bacteria isolated from alkaline two-phase olive mill wastes,” Research in Microbiology, vol. 157, no. 4, pp. 376–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Hafidi, S. Amir, and J.-C. Revel, “Structural characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR,” Process Biochemistry, vol. 40, no. 8, pp. 2615–2622, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. E. S. Aktas, S. Imre, and L. Ersoy, “Characterization and lime treatment of olive mill wastewater,” Water Research, vol. 35, no. 9, pp. 2336–2340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Y. Ammary, “Treatment of olive mill wastewater using an anaerobic sequencing batch reactor,” Desalination, vol. 177, no. 1–3, pp. 157–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Zenjari, H. El Hajjouji, G. Ait Baddi et al., “Eliminating toxic compounds by composting olive mill wastewater-straw mixtures,” Journal of Hazardous Materials, vol. 138, no. 3, pp. 433–437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Amaral, M. S. Lucas, J. Coutinho, A. L. Crespí, M. do Rosário Anjos, and C. Pais, “Microbiological and physicochemical characterization of olive mill wastewaters from a continuous olive mill in Northeastern Portugal,” Bioresource Technology, vol. 99, no. 15, pp. 7215–7223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Eroǧlu, I. Eroǧlu, U. Gündüz, and M. Yücel, “Comparison of physicochemical characteristics and photofermentative hydrogen production potential of wastewaters produced from different olive oil mills in Western-Anatolia, Turkey,” Biomass and Bioenergy, vol. 33, no. 4, pp. 706–711, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Aviani, M. Raviv, Y. Hadar et al., “Effects of harvest date, irrigation level, cultivar type and fruit water content on olive mill wastewater generated by a laboratory scale ‘Abencor’ milling system,” Bioresource Technology, vol. 107, pp. 87–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Ntougias, F. Gaitis, P. Katsaris, S. Skoulika, N. Iliopoulos, and G. I. Zervakis, “The effects of olives harvest period and production year on olive mill wastewater properties—evaluation of Pleurotus strains as bioindicators of the effluent's toxicity,” Chemosphere, vol. 92, no. 4, pp. 399–405, 2013.
  13. J. A. Alburquerque, J. Gonzálvez, D. García, and J. Cegarra, “Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction,” Bioresource Technology, vol. 92, no. 2, pp. 195–200, 2004.
  14. A. G. Vlyssides, M. Loizides, and P. K. Karlis, “Integrated strategic approach for reusing olive oil extraction by-products,” Journal of Cleaner Production, vol. 12, no. 6, pp. 603–611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Baeta-Hall, M. Céu Sàágua, M. Lourdes Bartolomeu, A. M. Anselmo, and M. Fernanda Rosa, “Bio-degradation of olive oil husks in composting aerated piles,” Bioresource Technology, vol. 96, no. 1, pp. 69–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Saez, J. Perez, and J. Martinez, “Low molecular weight phenolics attenuation during simulated treatment of wastewaters from olive oil mills in evaporation ponds,” Water Research, vol. 26, no. 9, pp. 1261–1266, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Ben Sassi, A. Boularbah, A. Jaouad, G. Walker, and A. Boussaid, “A comparison of Olive oil Mill Wastewaters (OMW) from three different processes in Morocco,” Process Biochemistry, vol. 41, no. 1, pp. 74–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. G. Karpouzas, S. Ntougias, E. Iskidou et al., “Olive mill wastewater affects the structure of soil bacterial communities,” Applied Soil Ecology, vol. 45, no. 2, pp. 101–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Yangui, A. Dhouib, A. Rhouma, and S. Sayadi, “Potential of hydroxytyrosol-rich composition from olive mill wastewater as a natural disinfectant and its effect on seeds vigour response,” Food Chemistry, vol. 117, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Ntougias and N. Kavroulakis, Natural Antioxidants from Olive Mill Wastes, Nova Publishers, New York, NY, USA, 2010.
  21. I. Ntaikou, C. Kourmentza, E. C. Koutrouli et al., “Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production,” Bioresource Technology, vol. 100, no. 15, pp. 3724–3730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ntougias, C. Ehaliotis, K. K. Papadopoulou, and G. Zervakis, “Application of respiration and FDA hydrolysis measurements for estimating microbial activity during composting processes,” Biology and Fertility of Soils, vol. 42, no. 4, pp. 330–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Zervakis, P. Yiatras, and C. Balis, “Edible mushrooms from olive oil mill wastes,” International Biodeterioration and Biodegradation, vol. 38, no. 3-4, pp. 237–243, 1996. View at Scopus
  24. G. Ouzounidou, G. I. Zervakis, and F. Gaitis, “Raw and microbiologically detoxified olive mill waste and their impact on plant growth,” Terrestrial and Aquatic Environmental Toxicology, vol. 4, no. 1, pp. 21–38, 2010.
  25. R. Capasso, A. Evidente, L. Schivo, G. Orru, M. A. Marcialis, and G. Cristinzio, “Antibacterial polyphenols from olive oil mill waste waters,” Journal of Applied Bacteriology, vol. 79, no. 4, pp. 393–398, 1995. View at Scopus
  26. E. Athanasoulia, P. Melidis, and A. Aivasidis, “Optimization of biogas production from waste activated sludge through serial digestion,” Renewable Energy, vol. 47, pp. 147–151, 2012.
  27. P. Baldrian, G. I. Zervakis, V. Merhautová, S. Ntougias, C. Ehaliotis, and F. Nerud, “The use of hydroxyl-radical-generating systems for the treatment of olive mill wastewaters,” Folia Microbiologica, vol. 51, no. 4, pp. 337–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Ntougias, K. K. Papadopoulou, G. I. Zervakis, N. Kavroulakis, and C. Ehaliotis, “Suppression of soil-borne pathogens of tomato by composts derived from agro-industrial wastes abundant in Mediterranean regions,” Biology and Fertility of Soils, vol. 44, no. 8, pp. 1081–1090, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Kavroulakis and S. Ntougias, “Bacterial and β-proteobacterial diversity in Olea europaea var. mastoidis- and O. europaea var. koroneiki-generated olive mill wastewaters: influence of cultivation and harvesting practice on bacterial community structure,” World Journal of Microbiology and Biotechnology, vol. 27, no. 1, pp. 57–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Tsiamis, G. Tzagkaraki, A. Chamalaki et al., “Olive-mill wastewater bacterial communities display a cultivar specific profile,” Current Microbiology, vol. 64, no. 2, pp. 197–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Goberna, M. Gadermaier, C. García, B. Wett, and H. Insam, “Adaptation of methanogenic communities to the cofermentation of cattle excreta and olive mill wastes at 37°C and 55°C,” Applied and Environmental Microbiology, vol. 76, no. 19, pp. 6564–6571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Vivas, B. Moreno, S. Garcia-Rodriguez, and E. Benitez, “Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste,” Bioresource Technology, vol. 100, no. 3, pp. 1319–1326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C. E. Jones, P. J. Murphy, and N. J. Russell, “Diversity and osmoregulatory responses of bacteria isolated from two-phase olive oil extraction waste products,” World Journal of Microbiology and Biotechnology, vol. 16, no. 6, pp. 555–561, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Venieri, A. Rouvalis, and J. Iliopoulou-Georgudaki, “Microbial and toxic evaluation of raw and treated olive oil mill wastewaters,” Journal of Chemical Technology and Biotechnology, vol. 85, no. 10, pp. 1380–1388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Federici, M. Pepi, A. Esposito et al., “Two-phase olive mill waste composting: community dynamics and functional role of the resident microbiota,” Bioresource Technology, vol. 102, no. 23, pp. 10965–10972, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J.-F. Brugère, A. Mihajlovski, M. Missaoui, and P. Peyret, “Tools for stools: the challenge of assessing human intestinal microbiota using molecular diagnostics,” Expert Review of Molecular Diagnostics, vol. 9, no. 4, pp. 353–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Bleve, C. Lezzi, M. A. Chiriatti et al., “Selection of non-conventional yeasts and their use in immobilized form for the bioremediation of olive oil mill wastewaters,” Bioresource Technology, vol. 102, no. 2, pp. 982–989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Sinigaglia, N. Di Benedetto, A. Bevilacqua, M. R. Corbo, A. Capece, and P. Romano, “Yeasts isolated from olive mill wastewaters from southern Italy: technological characterization and potential use for phenol removal,” Applied Microbiology and Biotechnology, vol. 87, no. 6, pp. 2345–2354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Ben Sassi, N. Ouazzani, G. M. Walker, S. Ibnsouda, M. El Mzibri, and A. Boussaid, “Detoxification of olive mill wastewaters by Moroccan yeast isolates,” Biodegradation, vol. 19, no. 3, pp. 337–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Romo-Sánchez, M. Alves-Baffi, M. Arévalo-Villena, J. Úbeda-Iranzo, and A. Briones-Pérez, “Yeast biodiversity from oleic ecosystems: study of their biotechnological properties,” Food Microbiology, vol. 27, no. 4, pp. 487–492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. G. Karpouzas, C. Rousidou, K. K. Papadopoulou et al., “Effect of continuous olive mill wastewater applications, in the presence and absence of nitrogen fertilization, on the structure of rhizosphere-soil fungal communities,” FEMS Microbiology Ecology, vol. 70, no. 3, pp. 388–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Ipsilantis, D. G. Karpouzas, K. K. Papadopoulou, and C. Ehaliotis, “Effects of soil application of olive mill wastewaters on the structure and function of the community of arbuscular mycorrhizal fungi,” Soil Biology and Biochemistry, vol. 41, no. 12, pp. 2466–2476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Millán, R. Lucas, A. Robles, T. García, G. A. de Cienfuegos, and A. Gálvez, “A study on the microbiota from olive-mill wastewater (OMW) disposal lagoons, with emphasis on filamentous fungi and their biodegradative potential,” Microbiological Research, vol. 155, no. 3, pp. 143–147, 2000. View at Scopus
  44. J. Mann, J. L. Markham, P. Peiris, N. Nair, R. N. Spooner-Hart, and P. Holford, “Screening and selection of fungi for bioremediation of olive mill wastewater,” World Journal of Microbiology and Biotechnology, vol. 26, no. 3, pp. 567–571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Aissam, M. J. Penninckx, and M. Benlemlih, “Reduction of phenolics content and COD in olive oil mill wastewaters by indigenous yeasts and fungi,” World Journal of Microbiology and Biotechnology, vol. 23, no. 9, pp. 1203–1208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. E. P. Giannoutsou, C. Meintanis, and A. D. Karagouni, “Identification of yeast strains isolated from a two-phase decanter system olive oil waste and investigation of their ability for its fermentation,” Bioresource Technology, vol. 93, no. 3, pp. 301–306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Karaouzas, N. T. Skoulikidis, U. Giannakou, and T. A. Albanis, “Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status,” Water Research, vol. 45, no. 19, pp. 6334–6346, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Mekki, A. Dhouib, F. Feki, and S. Sayadi, “Assessment of toxicity of the untreated and treated olive mill wastewaters and soil irrigated by using microbiotests,” Ecotoxicology and Environmental Safety, vol. 69, no. 3, pp. 488–495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. H. K. Obied, D. R. Bedgood Jr., P. D. Prenzler, and K. Robards, “Bioscreening of Australian olive mill waste extracts: biophenol content, antioxidant, antimicrobial and molluscicidal activities,” Food and Chemical Toxicology, vol. 45, no. 7, pp. 1238–1248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Tafesh, N. Najami, J. Jadoun, F. Halahlih, H. Riepl, and H. Azaizeh, “Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 431021, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Fiorentino, A. Gentili, M. Isidori et al., “Environmental effects caused by olive mill wastewaters: toxicity comparison of low-molecular-weight phenol components,” Journal of Agricultural and Food Chemistry, vol. 51, no. 4, pp. 1005–1009, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Greco Jr., M. L. Colarieti, G. Toscano, G. Iamarino, M. A. Rao, and L. Gianfreda, “Mitigation of olive mill wastewater toxicity,” Journal of Agricultural and Food Chemistry, vol. 54, no. 18, pp. 6776–6782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Peixoto, F. Martins, C. Amaral, J. Gomes-Laranjo, J. Almeida, and C. M. Palmeira, “Evaluation of olive oil mill wastewater toxicity on the mitochondrial bioenergetics after treatment with Candida oleophila,” Ecotoxicology and Environmental Safety, vol. 70, no. 2, pp. 266–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Hanifi and I. El Hadrami, “Olive mill wastewaters: diversity of the fatal product in olive oil industry and its valorisation as agronomical amendment of poor soils: a review,” Journal of Agronomy, vol. 8, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Yangui, S. Sayadi, A. Gargoubi, and A. Dhouib, “Fungicidal effect of hydroxytyrosol-rich preparations from olive mill wastewater against Verticillium dahliae,” Crop Protection, vol. 29, no. 10, pp. 1208–1213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Friedman, R. Rasooly, P. M. Do, and P. R. Henika, “The olive compound 4-hydroxytyrosol inactivates Staphylococcus aureus bacteria and Staphylococcal Enterotoxin A (SEA),” Journal of Food Science, vol. 76, no. 8, pp. M558–M563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. M. L. Cayuela, C. Mondini, M. A. Sánchez-Monedero, and A. Roig, “Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting,” Bioresource Technology, vol. 99, no. 10, pp. 4255–4262, 2008. View at Publisher · View at Google Scholar
  58. M. DellaGreca, P. Monaco, G. Pinto, A. Pollio, L. Previtera, and F. Temussi, “Phytotoxicity of low-molecular-weight phenols from olive mill waste waters,” Bulletin of Environmental Contamination and Toxicology, vol. 67, no. 3, pp. 352–359, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Mekki, A. Dhouib, and S. Sayadi, “Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater,” Microbiological Research, vol. 161, no. 2, pp. 93–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. G. Di Serio, B. Lanza, M. R. Mucciarella et al., “Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil,” International Biodeterioration and Biodegradation, vol. 62, no. 4, pp. 403–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Z. El Hassani, A. Zinedine, S. Mdaghri Alaoui, M. Merzouki, and M. Benlemlih, “Use of olive mill wastewater as an organic amendment for Mentha spicata L,” Industrial Crops and Products, vol. 32, no. 3, pp. 343–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Mechri, M. Issaoui, A. Echbili et al., “Olive orchard amended with olive mill wastewater: effects on olive fruit and olive oil quality,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 1544–1550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Nasini, G. Gigliotti, M. A. Balduccini, E. Federici, G. Cenci, and P. Proietti, “Effect of solid olive-mill waste amendment on soil fertility and olive (Olea europaea L.) tree activity,” Agriculture, Ecosystems and Environment, vol. 164, pp. 292–297, 2013.
  64. C. Rousidou, K. Papadopoulou, G. Zervakis, B. K. Singh, C. Ehaliotis, and D. G. Karpouzas, “Repeated application of diluted olive mill wastewater induces changes in the structure of the soil microbial community,” European Journal of Soil Biology, vol. 46, no. 1, pp. 34–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Mechri, F. B. Mariem, M. Baham, S. B. Elhadj, and M. Hammami, “Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi,” Soil Biology and Biochemistry, vol. 40, no. 1, pp. 152–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Mechri, H. Chehab, F. Attia, F. B. Mariem, M. Braham, and M. Hammami, “Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures,” European Journal of Soil Biology, vol. 46, no. 5, pp. 312–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Kotsou, I. Mari, K. Lasaridi, I. Chatzipavlidis, C. Balis, and A. Kyriacou, “The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani,” Applied Soil Ecology, vol. 26, no. 2, pp. 113–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Laor, I. Saadi, M. Raviv, S. Medina, D. Erez-Reifen, and H. Eizenbergc, “Land spreading of olive mill wastewater in Israel: current knowledge, practical experience, and future research needs,” Israel Journal of Plant Sciences, vol. 59, no. 1, pp. 39–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Kirby, “Actinomycetes and lignin degradation,” in Advances in Applied Microbiology, J. W. B. Allen, I. Laskin Geoffrey, M. Gadd, and S. Sariaslani, Eds., vol. 58, pp. 125–168, Academic Press, 2005.
  70. A. Krastanov, Z. Alexieva, and H. Yemendzhiev, “Microbial degradation of phenol and phenolic derivatives,” Engineering in Life Sciences, vol. 13, no. 1, pp. 76–87, 2013.
  71. R. Jarboui, F. Sellami, C. Azri, N. Gharsallah, and E. Ammar, “Olive mill wastewater evaporation management using PCA method. Case study of natural degradation in stabilization ponds (Sfax, Tunisia),” Journal of Hazardous Materials, vol. 176, no. 1–3, pp. 992–1005, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Sampedro, M. Giubilei, T. Cajthaml et al., “Short-term impact of dry olive mill residue addition to soil on the resident microbiota,” Bioresource Technology, vol. 100, no. 23, pp. 6098–6106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. I. Sampedro, E. Aranda, R. Díaz, M. García-Sanchez, J. A. Ocampo, and I. García-Romera, “Saprobe fungi decreased the sensitivity to the toxic effect of dry olive mill residue on arbuscular mycorrhizal plants,” Chemosphere, vol. 70, no. 8, pp. 1383–1389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Benitez, H. Sainz, and R. Nogales, “Hydrolytic enzyme activities of extracted humic substances during the vermicomposting of a lignocellulosic olive waste,” Bioresource Technology, vol. 96, no. 7, pp. 785–790, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. M. J. Fernández-Gómez, R. Nogales, H. Insam, E. Romero, and M. Goberna, “Role of vermicompost chemical composition, microbial functional diversity, and fungal community structure in their microbial respiratory response to three pesticides,” Bioresource Technology, vol. 102, no. 20, pp. 9638–9645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. M. J. Fernández-Gómez, R. Nogales, H. Insam, E. Romero, and M. Goberna, “Use of DGGE and COMPOCHIP for investigating bacterial communities of various vermicomposts produced from different wastes under dissimilar conditions,” Science of the Total Environment, vol. 414, pp. 664–671, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Ertuğrul, G. Dönmez, and S. Takaç, “Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity,” Journal of Hazardous Materials, vol. 149, no. 3, pp. 720–724, 2007.
  78. B. Moreno, R. Nogales, C. Macci, G. Masciandaro, and E. Benitez, “Microbial eco-physiological profiles to estimate the biological restoration of a trichloroethylene-contaminated soil,” Ecological Indicators, vol. 11, no. 6, pp. 1563–1571, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Di Gennaro, B. Moreno, E. Annoni, S. García-Rodríguez, G. Bestetti, and E. Benitez, “Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 1464–1469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Bertin, S. Lampis, D. Todaro et al., “Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon,” Water Research, vol. 44, no. 15, pp. 4537–4549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Scoma, L. Bertin, G. Zanaroli, S. Fraraccio, and F. Fava, “A physicochemical-biotechnological approach for an integrated valorization of olive mill wastewater,” Bioresource Technology, vol. 102, no. 22, pp. 10273–10279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Bertin, M. C. Colao, M. Ruzzi, and F. Fava, “Performances and microbial features of a granular activated carbon packed-bed biofilm reactor capable of an efficient anaerobic digestion of olive mill wastewaters,” FEMS Microbiology Ecology, vol. 48, no. 3, pp. 413–423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. C.-L. Chen, J.-H. Wu, I.-C. Tseng, T.-M. Liang, and W.-T. Liu, “Characterization of active microbes in a full-scale anaerobic fluidized bed reactor treating phenolic wastewater,” Microbes and Environments, vol. 24, no. 2, pp. 144–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. S.-Z. Ke, Z. Shi, T. Zhang, and H. H. P. Fang, “Degradation of phenol in an upflow anaerobic sludge blanket (UASB) reactor at ambient temperature,” Journal of Environmental Sciences, vol. 16, no. 3, pp. 525–528, 2004. View at Scopus
  85. A. Rizzi, M. Zucchi, S. Borin, M. Marzorati, C. Sorlini, and D. Daffonchio, “Response of methanogen populations to organic load increase during anaerobic digestion of olive mill wastewater,” Journal of Chemical Technology and Biotechnology, vol. 81, no. 9, pp. 1556–1562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Rincón, F. Raposo, R. Borja, J. M. Gonzalez, M. C. Portillo, and C. Saiz-Jimenez, “Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phases olive mill solid wastes at low organic loading rates,” Journal of Biotechnology, vol. 121, no. 4, pp. 534–543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Rincón, R. Borja, J. M. González, M. C. Portillo, and C. Sáiz-Jiménez, “Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue,” Biochemical Engineering Journal, vol. 40, no. 2, pp. 253–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Di Gioia, C. Barberio, S. Spagnesi, L. Marchetti, and F. Fava, “Characterization of four olive-mill-wastewater indigenous bacterial strains capable of aerobically degrading hydroxylated and methoxylated monocyclic aromatic compounds,” Archives of Microbiology, vol. 178, no. 3, pp. 208–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Di Gioia, F. Fava, L. Bertin, and L. Marchetti, “Biodegradation of synthetic and naturally occurring mixtures of mono-cyclic aromatic compounds present in olive mill wastewaters by two aerobic bacteria,” Applied Microbiology and Biotechnology, vol. 55, no. 5, pp. 619–626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. B. de Felice, G. Pontecorvo, and M. Carfagna, “Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida,” Acta Biotechnologica, vol. 17, no. 3, pp. 231–239, 1997. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Ben Othman, L. Ayed, N. Assas, F. Kachouri, M. Hammami, and M. Hamdi, “Ecological removal of recalcitrant phenolic compounds of treated olive mill wastewater by Pediococcus pentosaceus,” Bioresource Technology, vol. 99, no. 8, pp. 2996–3001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Papadelli, A. Roussis, K. Papadopoulou et al., “Biochemical and molecular characterization of an Azotobacter vinelandii strain with respect to its ability to grow and fix nitrogen in olive mill wastewater,” International Biodeterioration and Biodegradation, vol. 38, no. 3-4, pp. 179–181, 1996. View at Scopus
  93. C. Ehaliotis, K. Papadopoulou, M. Kotsou, I. Mari, and C. Balis, “Adaptation and population dynamics of Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater,” FEMS Microbiology Ecology, vol. 30, no. 4, pp. 301–311, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. A. El Asli, F. Errachidi, R. Bennisse, A.-I. Qatibi, and M. Errami, “Effect of cell immobilization on the treatment of olive mill wastewater by a total phenols, acetic acid and formic acid degrading bacterium strain,” Grasas y Aceites, vol. 56, no. 2, pp. 116–120, 2005. View at Scopus
  95. M. Chtourou, E. Ammar, M. Nasri, and K. Medhioub, “Isolation of a yeast, Trichosporon cutaneum, able to use molecular weight phenolic compounds: application to olive mill waste water treatment,” Journal of Chemical Technology and Biotechnology, vol. 79, no. 8, pp. 869–878, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Gonçalves, M. Lopes, J. P. Ferreira, and I. Belo, “Biological treatment of olive mill wastewater by non-conventional yeasts,” Bioresource Technology, vol. 100, no. 15, pp. 3759–3763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Jarboui, H. Baati, F. Fetoui, A. Gargouri, N. Gharsallah, and E. Ammar, “Yeast performance in wastewater treatment: case study of Rhodotorula mucilaginosa,” Environmental Technology, vol. 33, no. 8, pp. 951–960, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Karakaya, Y. Laleli, and S. Takaç, “Development of process conditions for biodegradation of raw olive mill wastewater by Rhodotorula glutinis,” International Biodeterioration and Biodegradation, vol. 75, pp. 75–82, 2012. View at Publisher · View at Google Scholar
  99. M. Lopes, C. Araújo, M. Aguedo et al., “The use of olive mill wastewater by wild type Yarrowia lipolytica strains: medium supplementation and surfactant presence effect,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 4, pp. 533–537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Martinez-Garcia, A. C. Johnson, R. T. Bachmann, C. J. Williams, A. Burgoyne, and R. G. J. Edyvean, “Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1398–1405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. A. D'Annibale, G. G. Sermanni, F. Federici, and M. Petruccioli, “Olive-mill wastewaters: a promising substrate for microbial lipase production,” Bioresource Technology, vol. 97, no. 15, pp. 1828–1833, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. I. García García, P. R. Jiménez Peña, J. L. Bonilla Venceslada, A. Martín Martín, M. A. Martín Santos, and E. Ramos Gómez, “Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum,” Process Biochemistry, vol. 35, no. 8, pp. 751–758, 2000. View at Publisher · View at Google Scholar
  103. N. Assas, L. Marouani, and M. Hamdi, “Scale down and optimization of olive mill wastewaters decolorization by Geotrichum candidum,” Bioprocess Engineering, vol. 22, no. 6, pp. 503–507, 2000. View at Scopus
  104. S. Ntougias, P. Baldrian, C. Ehaliotis et al., “Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus,” Chemosphere, vol. 88, no. 5, pp. 620–626, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. S. M. Alaoui, M. Merzouki, M. J. Penninckx, and M. Benlemlih, “Relationship between cultivation mode of white rot fungi and their efficiency for olive oil mill wastewaters treatment,” Electronic Journal of Biotechnology, vol. 11, no. 4, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. M. T. Cambria, S. Ragusa, V. Calabrese, and A. Cambria, “Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds,” Applied Biochemistry and Biotechnology, vol. 163, no. 3, pp. 415–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. A. D'Annibale, R. Casa, F. Pieruccetti, M. Ricci, and R. Marabottini, “Lentinula edodes removes phenols from olive-mill wastewater: impact on durum wheat (Triticum durum Desf.) germinability,” Chemosphere, vol. 54, no. 7, pp. 887–894, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Fenice, G. Giovannozzi Sermanni, F. Federici, and A. D'Annibale, “Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media,” Journal of Biotechnology, vol. 100, no. 1, pp. 77–85, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. C. I. Justino, K. Duarte, F. Loureiro et al., “Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 1560–1572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Ouzounidou, S. Ntougias, M. Asfi, F. Gaitis, and G. I. Zervakis, “Raw and fungal-treated olive-mill wastewater effects on selected parameters of lettuce (Lactuca sativa L.) growth—the role of proline,” Journal of Environmental Science and Health, Part B, vol. 47, no. 7, pp. 728–735, 2012. View at Publisher · View at Google Scholar
  111. T. de la Rubia, M. Lucas, and J. Martínez, “Controversial role of fungal laccases in decreasing the antibacterial effect of olive mill waste-waters,” Bioresource Technology, vol. 99, no. 5, pp. 1018–1025, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. I. Sampedro, S. Marinari, A. D'Annibale, S. Grego, J. A. Ocampo, and I. García-Romera, “Organic matter evolution and partial detoxification in two-phase olive mill waste colonized by white-rot fungi,” International Biodeterioration and Biodegradation, vol. 60, no. 2, pp. 116–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Jaouani, S. Sayadi, M. Vanthournhout, and M. J. Penninckx, “Potent fungi for decolourisation of olive oil mill wastewaters,” Enzyme and Microbial Technology, vol. 33, no. 6, pp. 802–809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Goudopoulou, A. Krimitzas, and M. A. Typas, “Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater,” Applied Microbiology and Biotechnology, vol. 88, no. 2, pp. 541–551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Pérez, T. de La Rubia, O. Ben Hamman, and J. Martínez, “Phanerochaete flavido-alba laccase induction and modification of manganese peroxidase isoenzyme pattern in decolorized olive oil mill wastewaters,” Applied and Environmental Microbiology, vol. 64, no. 7, pp. 2726–2729, 1998. View at Scopus
  116. M. García-Sánchez, I. Garrido, I. J. Casimiro et al., “Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue,” Chemosphere, vol. 89, no. 6, pp. 708–716, 2012.
  117. L. Abrunhosa, F. Oliveira, D. Dantas, C. Gonçalves, and I. Belo, “Lipase production by Aspergillus ibericus using olive mill wastewater,” Bioprocess and Biosystems Engineering, vol. 36, no. 3, pp. 285–291, 2013.
  118. E. Aranda, I. Sampedro, J. A. Ocampo, and I. Garća-Romera, “Contribution of hydrolytic enzymes produced by saprophytic fungi to the decrease in plant toxicity caused by water-soluble substances in olive mill dry residue,” Applied Microbiology and Biotechnology, vol. 64, no. 1, pp. 132–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. A. D'Annibale, V. Brozzoli, S. Crognale, A. M. Gallo, F. Federici, and M. Petruccioli, “Optimisation by response surface methodology of fungal lipase production on olive mill wastewater,” Journal of Chemical Technology and Biotechnology, vol. 81, no. 9, pp. 1586–1593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. I. Sampedro, T. Cajthaml, S. Marinari, M. Petruccioli, S. Grego, and A. D'Annibale, “Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus Paecilomyces farinosus,” Process Biochemistry, vol. 44, no. 2, pp. 216–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. J. A. Libra, M. Borchert, and S. Banit, “Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions,” Biotechnology and Bioengineering, vol. 82, no. 6, pp. 736–744, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Chiaiese, F. Palomba, F. Tatino et al., “Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater,” Enzyme and Microbial Technology, vol. 49, no. 6-7, pp. 540–546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. P.-P. Liebgott, M. Labat, L. Casalot, A. Amouric, and J. Lorquin, “Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by the new Halomonas sp. strain HTB24,” FEMS Microbiology Letters, vol. 276, no. 1, pp. 26–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. M. M. Santos, C. Piccirillo, P. M. L. Castro, N. Kalogerakis, and M. E. Pintado, “Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria,” World Journal of Microbiology and Biotechnology, vol. 28, no. 6, pp. 2435–2440, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. H. Jemai, A. El Feki, and S. Sayadi, “Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 8798–8804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. A. E. Asli, E. Boles, C. P. Hollenberg, and M. Errami, “Conversion of xylose to ethanol by a novel phenol-tolerant strain of Enterobacteriaceae isolated from olive mill wastewater,” Biotechnology Letters, vol. 24, no. 13, pp. 1101–1105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Chamkha, B. K. C. Patel, J.-L. Garcia, and M. Labat, “Isolation of Clostridium bifermentans from oil mill wastewaters converting cinnamic acid to 3-phenylpropionic acid and emendation of the species,” Anaerobe, vol. 7, no. 4, pp. 189–197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Reverberi, F. Di Mario, and U. Tomati, “β-glucan synthase induction in mushrooms grown on olive mill wastewaters,” Applied Microbiology and Biotechnology, vol. 66, no. 2, pp. 217–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. R. García-de-la-Fuente, G. Cuesta, E. Sanchís-Jiménez, S. Botella, M. Abad, and F. Fornes, “Bacteria involved in sulfur amendment oxidation and acidification processes of alkaline ‘alperujo’ compost,” Bioresource Technology, vol. 102, no. 2, pp. 1481–1488, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Yangui, A. Rhouma, M. A. Triki, K. Gargouri, and J. Bouzid, “Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains,” Crop Protection, vol. 27, no. 2, pp. 189–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. I. Vagelas, A. Papachatzis, H. Kalorizou, and E. Wogiatzi, “Biological control of Botrytis fruit rot (Gray mold) on strawberry and red pepper fruits by olive oil mill wastewater,” Biotechnology and Biotechnological Equipment, vol. 23, no. 4, pp. 1489–1491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. I. Vagelas, H. Kalorizou, A. Papachatzis, and M. Botu, “Bioactivity of olive oil mill wastewater against plant pathogens and post-harvest diseases,” Biotechnology and Biotechnological Equipment, vol. 23, no. 2, pp. 1217–1219, 2009. View at Scopus
  133. Z. Özdemir, “Growth inhibition of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato by olive mill wastewaters and citric acid,” Journal of Plant Pathology, vol. 91, no. 1, pp. 221–224, 2009. View at Scopus
  134. R. K. B. Jenana, R. Haouala, M. A. Triki et al., “Composts, compost extracts and bacterial suppressive action on Pythium aphanidermatum in tomato,” Pakistan Journal of Botany, vol. 41, no. 1, pp. 315–327, 2009. View at Scopus
  135. T. Yangui, A. Rhouma, K. Gargouri, M. A. Triki, and J. Bouzid, “Efficacy of olive mill waste water and its derivatives in the suppression of crown gall disease of bitter almond,” European Journal of Plant Pathology, vol. 122, no. 4, pp. 495–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. N. Kavroulakis, S. Ntougias, M. I. Besi et al., “Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporum f.sp. radicis-lycopersici,” Plant and Soil, vol. 333, no. 1, pp. 233–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. M. L. Cayuela, P. D. Millner, S. L. F. Meyer, and A. Roig, “Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes,” Science of the Total Environment, vol. 399, no. 1–3, pp. 11–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. G. Bonanomi, V. Giorgi, D. S. Giovanni, D. Neri, and F. Scala, “Olive mill residues affect saprophytic growth and disease incidence of foliar and soilborne plant fungal pathogens,” Agriculture, Ecosystems and Environment, vol. 115, no. 1–4, pp. 194–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. G. Cuesta, R. García-de-la-Fuente, M. Abad, and F. Fornes, “Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents,” Journal of Environmental Management, vol. 95, pp. S280–S284, 2012. View at Publisher · View at Google Scholar · View at Scopus
  140. H. A. J. Hoitink and M. J. Boehm, “Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon,” Annual Review of Phytopathology, vol. 37, no. 1, pp. 427–446, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. N. Kavroulakis, S. Ntougias, G. I. Zervakis, C. Ehaliotis, K. Haralampidis, and K. K. Papadopoulou, “Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain,” Journal of Experimental Botany, vol. 58, no. 14, pp. 3853–3864, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. S. Ntougias, G. I. Zervakis, and C. Fasseas, “Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 9, pp. 1975–1983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. S. Ntougias, C. Fasseas, and G. I. Zervakis, “Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 2, pp. 398–404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. R. Stepanauskas, “Single cell genomics: an individual look at microbes,” Current Opinion in Microbiology, vol. 15, no. 5, pp. 613–620, 2012. View at Publisher · View at Google Scholar
  145. T. Woyke, G. Xie, A. Copeland et al., “Assembling the marine metagenome, one cell at a time,” PLoS One, vol. 4, no. 4, Article ID e5299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. T. Woyke, D. Tighe, K. Mavromatis et al., “One bacterial cell, one complete genome,” PLoS One, vol. 5, no. 4, Article ID e10314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. O. U. Mason, T. C. Hazen, S. Borglin et al., “Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill,” The ISME Journal, vol. 6, no. 9, pp. 1715–1727, 2012. View at Publisher · View at Google Scholar