About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 786051, 8 pages
http://dx.doi.org/10.1155/2013/786051
Research Article

Bees' Honey Protects the Liver of Male Rats against Melamine Toxicity

1Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
2Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, Minufiya University, P.O. Box 79, Sadat City, Egypt

Received 17 April 2013; Revised 19 June 2013; Accepted 22 June 2013

Academic Editor: Isabel C. F. R. Ferreira

Copyright © 2013 Haddad A. El Rabey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-C. Tyan, M.-H. Yang, S.-B. Jong, C.-K. Wang, and J. Shiea, “Melamine contamination,” Analytical and Bioanalytical Chemistry, vol. 395, no. 3, pp. 729–735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. Brown, K.-S. Jeong, R. H. Poppenga et al., “Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007,” Journal of Veterinary Diagnostic Investigation, vol. 19, no. 5, pp. 525–531, 2007. View at Scopus
  3. J. C. Moore, J. W. DeVries, M. Lipp, J. C. Griffiths, and D. R. Abernethy, “Total protein methods and their potential utility to reduce the risk of food protein adulteration,” Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 4, pp. 330–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. N. Heller and C. B. Nochetto, “Simultaneous determination and confirmation of melamine and cyanuric acid in animal feed by zwitterionic hydrophilic interaction chromatography and tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 22, no. 22, pp. 3624–3632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. W. Klampfl, L. Andersen, M. Haunschmidt, M. Himmelsbach, and W. Buchberger, “Analysis of melamine in milk powder by CZE using UV detection and hyphenation with ESI quadrupole/TOF MS detection,” Electrophoresis, vol. 30, no. 10, pp. 1743–1746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Puschner and R. Reimschuessel, “Toxicosis caused by melamine and cyanuric acid in dogs and cats: uncovering the mystery and subsequent global implications,” Clinics in Laboratory Medicine, vol. 31, no. 1, pp. 181–199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Baynes, G. Smith, S. E. Mason, E. Barrett, B. M. Barlow, and J. E. Riviere, “Pharmacokinetics of melamine in pigs following intravenous administration,” Food and Chemical Toxicology, vol. 46, no. 3, pp. 1196–1200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. W.-I. Jeong, H. D. Sun, D.-H. Jeong et al., “Canine renal failure syndrome in three dogs,” Journal of Veterinary Science, vol. 7, no. 3, pp. 299–301, 2006. View at Scopus
  9. K.-C. Chen, C.-W. Liao, F.-P. Cheng et al., “Evaluation of subchronic toxicity of pet food contaminated with melamine and cyanuric acid in rats,” Toxicologic Pathology, vol. 37, no. 7, pp. 959–968, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. K.-C. Hau, T. H. Kwan, and P. K.-T. Li, “Melamine toxicity and the kidney,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 245–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Bhalla, P. C. Grimm, G. M. Chertow, and A. C. Pao, “Melamine nephrotoxicity: an emerging epidemic in an era of globalization,” Kidney International, vol. 75, no. 8, pp. 774–779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Reimschuessel, E. Evans, W. C. Andersen et al., “Residue depletion of melamine and cyanuric acid in catfish and rainbow trout following oral administration,” Journal of Veterinary Pharmacology and Therapeutics, vol. 33, no. 2, pp. 172–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. G. Skinner, J. D. Thomas, and J. D. Osterloh, “Melamine toxicity,” Journal of Medical Toxicology, vol. 6, no. 1, pp. 50–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. E. Cianciolo, K. Bischoff, J. G. Ebel, T. J. Van Winkle, R. E. Goldstein, and L. M. Serfilippi, “Clinicopathologic, histologic, and toxicologic findings in 70 cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid,” Journal of the American Veterinary Medical Association, vol. 233, no. 5, pp. 729–737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Y. T. Hon, P. W. S. Chu, C.-H. Cheng et al., “Development of melamine certified reference material in milk using two different isotope dilution mass spectrometry techniques,” Journal of Chromatography A, vol. 1218, no. 39, pp. 6907–6913, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Puschner, R. H. Poppenga, L. J. Lowenstine, M. S. Filigenzi, and P. A. Pesavento, “Assessment of melamine and cyanuric acid toxicity in cats,” Journal of Veterinary Diagnostic Investigation, vol. 19, no. 6, pp. 616–624, 2007. View at Scopus
  17. M. Blasa, M. Candiracci, A. Accorsi, M. P. Piacentini, M. C. Albertini, and E. Piatti, “Raw Millefiori honey is packed full of antioxidants,” Food Chemistry, vol. 97, no. 2, pp. 217–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Bertoncelj, U. Doberšek, M. Jamnik, and T. Golob, “Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey,” Food Chemistry, vol. 105, no. 2, pp. 822–828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Guler, A. Bakan, C. Nisbet, and O. Yavuz, “Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup,” Food Chemistry, vol. 105, no. 3, pp. 1119–1125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Stephens, R. C. Schlothauer, B. D. Morris et al., “Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys,” Food Chemistry, vol. 120, no. 1, pp. 78–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. E. Johnston, H. A. Sepe, C. L. Miano, R. G. Brannan, and A. L. Alderton, “Honey inhibits lipid oxidation in ready-to-eat ground beef patties,” Meat Science, vol. 70, no. 4, pp. 627–631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. H. A. Hassan, “The possible protective role of bees honey against hazard effects of somesynthetic food additives on the kidney functions of male rats,” Journal of the Egyptian Society of Toxicology, vol. 36, pp. 13–21, 2007.
  23. O. O. Erejuwa, S. A. Sulaiman, and M. S. Ab Wahab, “Honey: a novel antioxidant,” Molecules, vol. 17, no. 4, pp. 4400–4423, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Y.-S. Yoon, D.-H. Kim, S.-K. Kim et al., “The melamine excretion effect of the electrolyzed reduced water in melamine-fed mice,” Food and Chemical Toxicology, vol. 49, no. 8, pp. 1814–1819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Yamada, E. Itoh, Y. Murakami, and M. Asano, “Prevention of ethanol-induced erythrocyte transformations by fructose and natural honey in low alcohol tolerance mice,” Pathophysiology, vol. 6, no. 3, pp. 163–170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. H. B. Waynforth, Rats as Laboratory Animals; Surgery, Experimental, Academic Press, New York, NY, USA, 1980.
  27. R. A. Drury, E. A. Wallington, and R. Cancerson, Carlton’s Histopathological Techniques, Oxford University Press, Oxford, UK, 4th edition, 1976.
  28. M. Fiorani, A. Accorsi, M. Blasa, G. Diamantini, and E. Piatti, “Flavonoids from Italian multifloral honeys reduce the extracellular ferricyanide in human red blood cells,” Journal of Agricultural and Food Chemistry, vol. 54, no. 21, pp. 8328–8334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Yao, Y. Jiang, B. D'Arcy et al., “Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys,” Journal of Agricultural and Food Chemistry, vol. 52, no. 2, pp. 210–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Michalkiewicz, M. Biesaga, and K. Pyrzynska, “Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey,” Journal of Chromatography A, vol. 1187, no. 1-2, pp. 18–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Gheldof, X.-H. Wang, and N. J. Engeseth, “Identification and quantification of antioxidant components of honeys from various floral sources,” Journal of Agricultural and Food Chemistry, vol. 50, no. 21, pp. 5870–5877, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Aliyu, O. A. Odunola, S. E. Owumi et al., “Daily consumption of honey: effects on male wister albino rats,” International Journal of Food Safety, vol. 1, no. 2, pp. 66–74, 2012.
  33. Z. El-Khayat and H. H. Ahmed, “Antitumer efficacy of edible Portulaca oleracea and bees honey in mice inoculated with Ehrlich ascttes tumer cells,” Journal of Union of Arab Biologists, vol. 13, pp. 583–605, 2000.
  34. J. D. Liu, J. J. Liu, J. H. Yuan, et al., “Proteome of melamine urinary bladder stones and implication for stone formation,” Toxicology Letters, vol. 212, pp. 307–314, 2012.
  35. R. L. M. Dobson, S. Motlagh, M. Quijano et al., “Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs,” Toxicological Sciences, vol. 106, no. 1, pp. 251–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. L. M. Chepulis, “The effect of honey compared to sucrose, mixed sugars, and a sugar-free diet on weight gain in young rats,” Journal of Food Science, vol. 72, no. 3, pp. S224–S229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Chepulis and N. Starkey, “The long-term effects of feeding honey compared with sucrose and a sugar-free diet on weight gain, lipid profiles, and DEXA measurements in rats,” Journal of Food Science, vol. 73, no. 1, pp. H1–H7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. J. Choo, “Green tea reduces body fat accretion caused by high-fat diet in rats through β-adrenoceptor activation of thermogenesis in brown adipose tissue,” Journal of Nutritional Biochemistry, vol. 14, no. 11, pp. 671–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Jaramillo-Juarez, M. L. Rodriguez-Vazquez, A. R. Rincon-Sanchez, M. Consolacion- Martinez, G. G. Ortiz, and J. Llamas, “Acute renal failure induced by carbon tetrachloride in rats with hepatic cirrhosis,” Annals of Hepatology, vol. 7, no. 4, pp. 331–338, 2008.
  40. J. I. Wilson, B. O. George, and G. E. Umukoro, “Effects of honey on the histology of liver in adult Wistar rats,” Biology and Medicine, vol. 3, no. 1, pp. 1–5, 2011.