About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 786475, 32 pages
http://dx.doi.org/10.1155/2013/786475
Review Article

Cell Transplantation for Spinal Cord Injury: A Systematic Review

1Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
2Department of Spine Surgery, The Affiliated Hospital of Luzhou Medical College, 646000 Luzhou, China
3Division of Neurosurgery, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, Avnida Dr. Enéas de Carvalho Aguiar 255, 05403-000 São Paulo, SP, Brazil

Received 10 September 2012; Revised 16 November 2012; Accepted 11 December 2012

Academic Editor: Xuan Jin

Copyright © 2013 Jun Li and Guilherme Lepski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. McCreedy and S. E. Sakiyama-Elbert, “Combination therapies in the CNS: engineering the environment,” Neuroscience Letters Journal, vol. 519, no. 2, pp. 115–121, 2012. View at Publisher · View at Google Scholar
  2. A. P. Pego, S. Kubinova, D. Cizkova, et al., “Regenerative medicine for the treatment of spinal cord injury: more than just promises?” Journal of Cellular and Molecular Medicine, vol. 16, no. 11, pp. 2564–2582, 2012. View at Publisher · View at Google Scholar
  3. C. A. Ruff, J. T. Wilcox, and M. G. Fehlings, “Cell-based transplantation strategies to promote plasticity following spinal cord injury,” Experimental Neurology, vol. 235, no. 1, pp. 78–90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. J. Kim and W. Sun, “Adult neurogenesis in the central and peripheral nervous systems,” International Neurourology Journal, vol. 16, no. 2, pp. 57–61, 2012. View at Publisher · View at Google Scholar
  5. K. Blair, J. Wray, and A. Smith, “The liberation of embryonic stem cells,” PLoS Genetics, vol. 7, no. 4, Article ID e1002019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. I. E. Konstantinov, “In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis,” Perspectives in Biology and Medicine, vol. 43, no. 2, pp. 269–276, 2000. View at Scopus
  7. D. L. Stemple and D. J. Anderson, “Isolation of a stem cell for neurons and glia from the mammalian neural crest,” Cell, vol. 71, no. 6, pp. 973–985, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. P. K. Yip and A. Malaspina, “Spinal cord trauma and the molecular point of no return,” Molecular Neurodegeneration, vol. 7, p. 6, 2012. View at Publisher · View at Google Scholar
  9. National Spinal Cord Injury Statistic Centre: Spinal Cord Injury Facts and Figures at a Glance, https://www.nscisc.uab.edu/PublicDocuments/nscisc_home/pdf/Facts%202011%20Feb%20Final.pdf, 2012.
  10. C. H. Tator, “Update on the pathophysiology and pathology of acute spinal cord injury,” Brain Pathology, vol. 5, no. 4, pp. 407–413, 1995. View at Scopus
  11. L. H. S. Sekhon and M. G. Fehlings, “Epidemiology, demographics, and pathophysiology of acute spinal cord injury,” Spine, vol. 26, supplement 24, pp. S2–S12, 2001. View at Scopus
  12. J. W. McDonald and C. Sadowsky, “Spinal-cord injury,” The Lancet, vol. 359, no. 9304, pp. 417–425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. W. Rowland, G. W. Hawryluk, B. Kwon, and M. G. Fehlings, “Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon,” Neurosurgical focus, vol. 25, no. 5, p. E2, 2008. View at Scopus
  14. L. Bauchet, N. Lonjon, F. E. Perrin, C. Gilbert, A. Privat, and C. Fattal, “Strategies for spinal cord repair after injury: a review of the literature and information,” Annals of Physical and Rehabilitation Medicine, vol. 52, no. 4, pp. 330–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. B. A. Kakulas, “A review of the neuropathology of human spinal cord injury with emphasis on special features,” Journal of Spinal Cord Medicine, vol. 22, no. 2, pp. 119–124, 1999. View at Scopus
  16. M. D. Norenberg, J. Smith, and A. Marcillo, “The pathology of human spinal cord injury: defining the problems,” Journal of Neurotrauma, vol. 21, no. 4, pp. 429–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Thuret, L. D. F. Moon, and F. H. Gage, “Therapeutic interventions after spinal cord injury,” Nature Reviews Neuroscience, vol. 7, no. 8, pp. 628–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Zhang, Y. Yin, S. J. Xu, Y. P. Wu, and W. S. Chen, “Inflammation & apoptosis in spinal cord injury,” Indian Journal of Medical Research, vol. 135, pp. 287–296, 2012.
  19. S. J. Campbell, V. H. Perry, F. J. Pitossi et al., “Central nervous system injury triggers Hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver,” American Journal of Pathology, vol. 166, no. 5, pp. 1487–1497, 2005. View at Scopus
  20. A. Jaerve and H. W. Muller, “Chemokines in CNS injury and repair,” Cell and Tissue Research, vol. 349, no. 1, pp. 229–248, 2012. View at Publisher · View at Google Scholar
  21. R. Deumens, G. C. Koopmans, W. M. M. Honig et al., “Chronically injured corticospinal axons do not cross large spinal lesion gaps after a multifactorial transplantation strategy using olfactory ensheathing cell/olfactory nerve fibroblast-biomatrix bridges,” Journal of Neuroscience Research, vol. 83, no. 5, pp. 811–820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Su, Y. Wu, Q. Yuan, J. Guo, W. Zhang, and W. Wu, “Optimal time point for neuronal generation of transplanted neural progenitor cells in injured Spinal cord following root avulsion,” Cell Transplantation, vol. 20, no. 2, pp. 167–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Garbossa, M. Boido, M. Fontanella, C. Fronda, A. Ducati, and A. Vercelli, “Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells,” Neurosurgical Review, vol. 35, no. 3, pp. 293–311, 2012. View at Publisher · View at Google Scholar
  24. D. D. Pearse and M. B. Bunge, “Designing cell- and gene-based regeneration strategies to repair the injured spinal cord,” Journal of Neurotrauma, vol. 23, no. 3-4, pp. 438–452, 2006. View at Scopus
  25. K. S. Kang, S. W. Kim, Y. H. Oh et al., “A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study,” Cytotherapy, vol. 7, no. 4, pp. 368–373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Cyranoski, “Paper chase,” Nature, vol. 437, no. 7060, pp. 810–811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Huang, L. Chen, H. Wang et al., “Influence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury,” Chinese Medical Journal, vol. 116, no. 10, pp. 1488–1491, 2003. View at Scopus
  28. B. H. Dobkin, A. Curt, and J. Guest, “Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 20, no. 1, pp. 5–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Curt, V. Dietz, and R. Swingler, “Controversial treatments for spinal-cord injuries,” The Lancet, vol. 365, no. 9462, pp. 841–842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Hernandeza, A. Torres-Espina, and X. Navarro, “Adult stem cell transplants for spinal cord injury repair: current state in preclinical research,” Current Stem Cell Research & Therapy, vol. 6, no. 3, pp. 273–287, 2011. View at Publisher · View at Google Scholar
  31. L. Grabel, “Prospects for pluripotent stem cell therapies: into the clinic and back to the bench,” Journal of Cellular Biochemistry, vol. 113, no. 2, pp. 381–387, 2012. View at Publisher · View at Google Scholar
  32. A. Trounson, R. G. Thakar, G. Lomax, and D. Gibbons, “Clinical trials for stem cell therapies,” BMC Medicine, vol. 9, p. 52, 2011. View at Publisher · View at Google Scholar
  33. R. S. Nandoe Tewarie, A. Hurtado, R. H. Bartels, A. Grotenhuis, and M. Oudega, “Stem cell-based therapies for spinal cord injury,” Journal of Spinal Cord Medicine, vol. 32, no. 2, pp. 105–114, 2009. View at Scopus
  34. T. E. Ichim, F. Solano, F. Lara et al., “Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report,” International Archives of Medicine, vol. 3, no. 1, p. 30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Nogradi, K. Pajer, and G. Márton, “The role of embryonic motoneuron transplants to restore the lost motor function of the injured spinal cord,” Annals of Anatomy, vol. 193, no. 4, pp. 362–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Eftekharpour, S. Karimi-Abdolrezaee, and M. G. Fehlings, “Current status of experimental cell replacement approaches to spinal cord injury,” Neurosurgical Focus, vol. 24, no. 3-4, p. E18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. C. Puri and A. Nagy, “Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on,” Stem Cells, vol. 30, no. 1, pp. 10–14, 2012. View at Publisher · View at Google Scholar
  38. A. D. Leavitt and I. Hamlett, “Homologous recombination in human embryonic stem cells: a tool for advancing cell therapy and understanding and treating human disease,” Clinical and Translational Science, vol. 4, no. 4, pp. 298–305, 2011. View at Publisher · View at Google Scholar
  39. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Miura, Y. Okada, T. Aoi, et al., “Variation in the safety of induced pluripotent stem cell lines,” Nature Biotechnology, vol. 27, no. 8, pp. 743–745, 2009. View at Publisher · View at Google Scholar
  41. O. Tsuji, K Miura, K. Fujiyoshi, S. Momoshima, M. Nakamura, and H. Okano, “Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells,” Neurotherapeutics, vol. 8, no. 4, pp. 668–676, 2011. View at Publisher · View at Google Scholar
  42. D. Bottai, D. Cigognini, L. Madaschi et al., “Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice,” Experimental Neurology, vol. 223, no. 2, pp. 452–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Kumagai, Y. Okada, J. Yamane et al., “Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury,” PLoS ONE, vol. 4, no. 11, Article ID e7706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Lowry, S. K. Goderie, M. Adamo et al., “Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury,” Experimental Neurology, vol. 209, no. 2, pp. 510–522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Fujimoto, M. Abematsu, A. Falk, et al., “Treatment of a mouse model of spinal cord injury by transplantation of human iPS cell-derived long-term self-renewing neuroepithelial-like,” Stem Cells, vol. 30, no. 6, pp. 1163–1173, 2012. View at Publisher · View at Google Scholar
  46. J. Chen, C. Bernreuther, M. Dihné, and M. Schachner, “Cell adhesion molecule L1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury,” Journal of Neurotrauma, vol. 22, no. 8, pp. 896–906, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. F. Cui, J. C. Xu, G. Hargus, I. Jakovcevski, M. Schachner, and C. Bernreuther, “Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery after spinal cord injury in mice,” PLoS ONE, vol. 6, no. 3, Article ID e17126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. F. E. Perrin, G. Boniface, C. Serguera et al., “Grafted human embryonic progenitors expressing neurogenin-2 stimulate axonal sprouting and improve motor recovery after severe spinal cord injury,” PLoS ONE, vol. 5, no. 12, Article ID e15914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Hatami, N. Z. Mehrjardi, S. Kiani et al., “Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord,” Cytotherapy, vol. 11, no. 5, pp. 618–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Niapour, F. Karamali, S. Nemati, et al., “Co-transplantation of human embryonic stem cell-derived neural progenitors and Schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery,” Cell Transplant, vol. 21, no. 5, pp. 827–843, 2012. View at Publisher · View at Google Scholar
  51. S. L. Rossi, G. Nistor, T. Wyatt et al., “Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord,” PLoS ONE, vol. 5, no. 7, Article ID e11852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. D. S. Kim, S. E. Jung Jung, T. S. Nam et al., “Transplantation of GABAergic neurons from ESCs attenuates tactile hypersensitivity following spinal cord injury,” Stem Cells, vol. 28, no. 11, pp. 2099–2108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. H. S. Keirstead, G. Nistor, G. Bernal et al., “Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury,” Journal of Neuroscience, vol. 25, no. 19, pp. 4694–4705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. C. L. Kerr, B. S. Letzen, C. M. Hill et al., “Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury,” International Journal of Neuroscience, vol. 120, no. 4, pp. 305–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Sharp, J. Frame, M. Siegenthaler, G. Nistor, and H. S. Keirstead, “Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury,” Stem Cells, vol. 28, no. 1, pp. 152–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Erceg, M. Ronaghi, M. Oria et al., “Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection,” Stem Cells, vol. 28, no. 9, pp. 1541–1549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Salehi, P. Pasbakhsh, M. Soleimani et al., “Repair of spinal cord injury by co-transplantation of embryonic stem cell-derived motor neuron and olfactory ensheathing cell,” Iranian Biomedical Journal, vol. 13, no. 3, pp. 125–135, 2009. View at Scopus
  58. H. Nakajima, K. Uchida, A. R. Guerrero, et al., “Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury,” Journal of Neurotrauma, vol. 29, no. 8, pp. 1614–1625, 2012. View at Publisher · View at Google Scholar
  59. E. Karaoz, S. Kabatas, G. Duruksu, et al., “Reduction of lesion in injured rat spinal cord and partial functional recovery of motility after bone marrow derived mesenchymal stem cell transplantation,” Turkish Neurosurgery, vol. 22, no. 2, pp. 207–217, 2012.
  60. W. B. Park, S. Y. Kim, S. H. Lee, H. W. Kim, J. S. Park, and J. K. Hyun, “The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats,” BMC Neuroscience, vol. 11, p. 119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. B. Abrams, C. Dominguez, K. Pernold et al., “Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury,” Restorative Neurology and Neuroscience, vol. 27, no. 4, pp. 307–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. E. S. Kang, K. Y. Ha, and Y. H. Kim, “Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes,” Journal of Korean Medical Science, vol. 27, no. 6, pp. 586–593, 2012. View at Publisher · View at Google Scholar
  63. M. Osaka, O. Honmou, T. Murakami et al., “Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome,” Brain Research C, vol. 1343, pp. 226–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. J. Mothe, G. Bozkurt, J. Catapano, et al., “Intrathecal transplantation of stem cells by lumbar puncture for thoracic Spinal cord injury in the rat,” Spinal Cord, vol. 49, no. 9, pp. 967–973, 2011. View at Publisher · View at Google Scholar
  65. M. Boido, D. Garbossa, M. Fontanella, A. Ducati, and A. Vercelli, “Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome following spinal cord compression,” World Neurosurgery. In press. View at Publisher · View at Google Scholar
  66. W. Gu, F. Zhang, Q. Xue, Z. Ma, P. Lu, and B. Yu, “Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord,” Neuropathology, vol. 30, no. 3, pp. 205–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. A. R. Alexanian, M. G. Fehlings, Z. Zhang, and D. J. Maiman, “Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 873–880, 2011. View at Publisher · View at Google Scholar
  68. D. X. Ban, G. Z. Ning, S. Q. Feng, et al., “Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats,” Regenerative Medicine, vol. 6, no. 6, pp. 707–720, 2011. View at Publisher · View at Google Scholar
  69. S. R. Cho, Y. R. Kim, H. S. Kang et al., “Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone barrow in a rat model of spinal cord injury,” Cell Transplantation, vol. 18, no. 12, pp. 1359–1368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. M. S. Pedram, M. M. Dehghan, M. Soleimani, D. Sharifi, S. H. Marjanmehr, and Z. Nasiri, “Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats,” Spinal Cord, vol. 48, no. 6, pp. 457–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. W. G. Liu, Z. Y. Wang, and Z. S. Huang, “Bone marrow-derived mesenchymal stem cells expressing the bFGF transgene promote axon regeneration and functional recovery after spinal cord injury in rats,” Neurological Research, vol. 33, no. 7, pp. 686–693, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. J. Zhang, W. Zhang, C.-G. Lin, et al., “Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats,” Journal of the Neurological Sciences, vol. 313, no. 1-2, pp. 64–74, 2012. View at Publisher · View at Google Scholar
  73. X. Zeng, Y. S. Zeng, Y. H. Ma, et al., “Bone marrow mesenchymal stem cells in a three dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis and reduce cavity formation in experimental spinal cord injury,” Cell Transplantation, vol. 20, no. 11-12, pp. 1881–1899, 2011. View at Publisher · View at Google Scholar
  74. K. N. Kang, Y. Kim da, S. M. Yoon, et al., “Tissue engineered regeneration of completely transected spinal cord using human mesenchymal stem cells,” Biomaterials, vol. 33, no. 19, pp. 4828–4835, 2012. View at Publisher · View at Google Scholar
  75. S. S. Park, Y. J. Lee, S. H. Lee, et al., “Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal Stem cells,” Cytotherapy, vol. 14, no. 5, pp. 584–597, 2012. View at Publisher · View at Google Scholar
  76. Y. W. Guo, Y. Q. Ke, M. Li et al., “Human umbilical cord-derived schwann-like cell transplantation combined with neurotrophin-3 administration in dyskinesia of rats with spinal cord injury,” Neurochemical Research, vol. 36, no. 5, pp. 783–792, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. A. J. Shang, S. Q. Hong, Q. Xu et al., “NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats,” Brain Research, vol. 1391, pp. 102–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. H. Lee, W. H. Chung, E. H. Kang et al., “Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury,” Journal of the Neurological Sciences, vol. 300, no. 1-2, pp. 86–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Åkesson, J. H. Piao, E. B. Samuelsson et al., “Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres,” Physiology and Behavior, vol. 92, no. 1-2, pp. 60–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. D. J. Webber, E. J. Bradbury, S. B. McMahon, and S. L. Minger, “Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord,” Regenerative Medicine, vol. 2, no. 6, pp. 929–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. I. Tarasenko, J. Gao, L. Nie et al., “Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior,” Journal of Neuroscience Research, vol. 85, no. 1, pp. 47–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Yan, L. Xu, A. M. Welsh et al., “Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord,” PLoS Medicine, vol. 4, no. 2, pp. 0318–0332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Yasuda, O. Tsuji, S. Shibata, et al., “Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord,” Stem Cells, vol. 29, no. 12, pp. 1983–1994, 2011. View at Publisher · View at Google Scholar
  84. D. H. Hwang, B. G. Kim, E. J. Kim et al., “Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury,” BMC Neuroscience, vol. 10, p. 117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. A. R. Alexanian, C. N. Svendsen, M. J. Crowe, and S. N. Kurpad, “Transplantation of human glial-restricted neural precursors into injured spinal cord promotes functional and sensory recovery without causing allodynia,” Cytotherapy, vol. 13, no. 1, pp. 61–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. G. Wang, Q. Ao, K. Gong, H. Zuo, Y. Gong, and X. Zhang, “Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury,” Cell Transplantation, vol. 19, no. 10, pp. 1325–1337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. D. L. Salazar, N. Uchida, F. P. T. Hamers, B. J. Cummings, and A. J. Anderson, “Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model,” PLoS ONE, vol. 5, no. 8, Article ID e12272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. D. Ziegler, D. Hsu, A. Takeoka et al., “Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection,” Experimental Neurology, vol. 229, no. 1, pp. 109–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Lu, H. Yang, M. Culbertson, L. Graham, A. J. Roskams, and M. H. Tuszynski, “Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury,” Journal of Neuroscience, vol. 26, no. 43, pp. 11120–11130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. J. E. Collazos-Castro, V. C. Muneton-Gomez, and M. Nieto-Sampedro, “Olfactory glia transplantation into cervical spinal cord contusion injuries,” Journal of Neurosurgery, vol. 3, no. 4, pp. 308–317, 2005. View at Publisher · View at Google Scholar
  91. L. A. Centenaro, C. Jaeger Mda, J. Ilha, et al., “Olfactory and respiratory lamina propria transplantation after spinal cord transection in rats: effects on functional recovery and axonal regeneration,” Brain Research, vol. 1426, pp. 54–72, 2011. View at Publisher · View at Google Scholar
  92. M. Aoki, H. Kishima, K. Yoshimura et al., “Limited functional recovery in rats with complete spinal cord injury after transplantation of whole-layer olfactory mucosa: laboratory investigation,” Journal of Neurosurgery, vol. 12, no. 2, pp. 122–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. M. W. Richter, P. A. Fletcher, J. Liu, W. Tetzlaff, and A. J. Roskams, “Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord,” Journal of Neuroscience, vol. 25, no. 46, pp. 10700–10711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. S. X. Zhang, F. Huang, M. Gates, J. White, and E. G. Holmberg, “Histological repair of damaged spinal cord tissue from chronic contusion injury of rat: a LM observation,” Histology and Histopathology, vol. 26, no. 1, pp. 45–58, 2011. View at Scopus
  95. S. X. Zhang, F. Huang, M. Gates, and E. G. Holmberg, “Scar ablation combined with LP/OEC transplantation promotes anatomical recovery and P0-positive myelination in chronically contused spinal cord of rats,” Brain Research, vol. 1399, pp. 1–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Yamamoto, G. Raisman, D. Li, and Y. Li, “Transplanted olfactory mucosal cells restore paw reaching function without regeneration of severed corticospinal tract fibres across the lesion,” Brain Research, vol. 1303, pp. 26–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Muñoz-Quiles, F. F. Santos-Benito, M. B. Llamusí, and A. Ramón-Cueto, “Chronic spinal injury repair by olfactory bulb ensheathing glia and feasibility for autologous therapy,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 12, pp. 1294–1308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. L. N. Novikova, S. Lobov, M. Wiberg, and L. N. Novikov, “Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation,” Experimental Neurology, vol. 229, no. 1, pp. 132–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Toft, D. T. Scott, S. C. Barnett, and J. S. Riddell, “Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury,” Brain, vol. 130, no. 4, pp. 970–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. K. J. Liu, J. Xu, C. Y. Yang et al., “Analysis of olfactory ensheathing glia transplantation-induced repair of spinal cord injury by electrophysiological, behavioral, and histochemical methods in rats,” Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 25–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Kalinčík, E. A. Choi, F. Féron et al., “Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury,” Autonomic Neuroscience, vol. 154, no. 1-2, pp. 20–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Tharion, K. Indirani, M. Durai, et al., “Motor recovery following olfactory ensheathing cell transplantation in rats with spinal cord injury,” Neurology India, vol. 59, no. 4, pp. 566–572, 2011. View at Publisher · View at Google Scholar
  103. J. C. Stamegna, M. S. Felix, J. Roux-Peyronnet et al., “Nasal OEC transplantation promotes respiratory recovery in a subchronic rat model of cervical spinal cord contusion,” Experimental Neurology, vol. 229, no. 1, pp. 120–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. F. Bretzner, J. R. Plemel, J. Liu, M. Richter, A. J. Roskams, and W. Tetzlaff, “Combination of olfactory ensheathing cells with local versus systemic cAMP treatment after a cervical rubrospinal tract injury,” Journal of Neuroscience Research, vol. 88, no. 13, pp. 2833–2846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. Yu-Hai. Ma, Y. Zhang, L. Cao et al., “Effect of neurotrophin-3 genetically modified olfactory ensheathing cells transplantation on spinal cord injury,” Cell Transplantation, vol. 19, no. 2, pp. 167–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Amemori, P. Jendelová, K. Růžičková, D. Arboleda, and E. Syková, “Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat,” Cytotherapy, vol. 12, no. 2, pp. 212–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Biernaskie, J. S. Sparling, J. Liu et al., “Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury,” Journal of Neuroscience, vol. 27, no. 36, pp. 9545–9559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Agudo, A. Woodhoo, D. Webber, R. Mirsky, K. R. Jessen, and S. B. McMahon, “Schwann cell precursors transplanted into the injured spinal cord multiply, integrate and are permissive for axon growth,” Glia, vol. 56, no. 12, pp. 1263–1270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. V. Patel, G. Joseph, A. Patel et al., “Suspension matrices for improved Schwann-cell survival after implantation into the injured rat spinal cord,” Journal of Neurotrauma, vol. 27, no. 5, pp. 789–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. H. E. Olson, G. E. Rooney, L. Gross et al., “Neural stem cell- and schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord,” Tissue Engineering A, vol. 15, no. 7, pp. 1797–1805, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Fouad, L. Schnell, M. B. Bunge, M. E. Schwab, T. Liebscher, and D. D. Pearse, “Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord,” Journal of Neuroscience, vol. 25, no. 5, pp. 1169–1178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. K. G. Sharp, L. A. Flanagan, K. M. Yee, and O. Steward, “A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats,” Experimental Neurology, vol. 233, no. 2, pp. 625–644, 2012. View at Publisher · View at Google Scholar · View at Scopus
  113. P. Koch, T. Opitz, J. A. Steinbeck, J. Ladewig, and O. Brüstle, “A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3225–3230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Falk, P. Koch, J. Kesavan, et al., “Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons,” PLoS One, vol. 7, no. 1, Article ID e29597, 2012.
  115. C. Galichet, F. Guillemot, and C. M. Parras, “Neurogenin 2 has an essential role in development of the dentate gyrus,” Development, vol. 135, no. 11, pp. 2031–2041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Shapiro, M. Kubek, E. Siemers, E. Daly, J. Callahan, and T. Putty, “Quantification of thyrotropin-releasing hormone changes and serotonin content changes following graded spinal cord injury,” Journal of Surgical Research, vol. 59, no. 3, pp. 393–398, 1995. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Pintér, B. Gloviczki, A. Szabó, G. Márton, and A. Nógrádi, “Increased survival and reinnervation of cervical motoneurons by riluzole after avulsion of the C7 ventral root,” Journal of Neurotrauma, vol. 27, no. 12, pp. 2273–2282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. Y. S. Gwak, H. Y. Tan, T. S. Nam, K. S. Paik, C. E. Hulsebosch, and J. W. Leem, “Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury,” Journal of Neurotrauma, vol. 23, no. 7, pp. 1111–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. R. M. Okamura, J. Lebkowski, M. Au, C. A. Priest, J. Denham, and A. S. Majumdar, “Immunological properties of human embryonic stem cell-derived oligodendrocyte progenitor cells,” Journal of Neuroimmunology, vol. 192, no. 1-2, pp. 134–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. D. J. Prockop, “Marrow stromal cells as stem cells for nonhematopoietic tissues,” Science, vol. 276, no. 5309, pp. 71–74, 1997. View at Publisher · View at Google Scholar · View at Scopus
  121. A. J. Friedenstein, U. F. Deriglasova, and N. N. Kulagina, “Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method,” Experimental Hematology, vol. 2, no. 2, pp. 83–92, 1974. View at Scopus
  122. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, vol. 418, no. 6893, pp. 41–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. T. R. Brazelton, F. M. V. Rossi, G. I. Keshet, and H. M. Blau, “From marrow to brain: expression of neuronal phenotypes in adult mice,” Science, vol. 290, no. 5497, pp. 1775–1779, 2000. View at Publisher · View at Google Scholar · View at Scopus
  126. E. Mezey, K. J. Chandross, G. Harta, R. A. Maki, and S. R. McKercher, “Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow,” Science, vol. 290, no. 5497, pp. 1779–1782, 2000. View at Publisher · View at Google Scholar · View at Scopus
  127. E. Mezey, S. Key, G. Vogelsang, I Szalayova, G. D. Lange, and B. Crain, “Transplanted bone marrow generates new neurons in human brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1364–1369, 2003. View at Publisher · View at Google Scholar
  128. J. Sanchez-Ramos, S. Song, F. Cardozo-Pelaez et al., “Adult bone marrow stromal cells differentiate into neural cells in vitro,” Experimental Neurology, vol. 164, no. 2, pp. 247–256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  129. D. Woodbury, E. J. Schwarz, D. J. Prockop, and I. B. Black, “Adult rat and human bone marrow stromal cells differentiate into neurons,” Journal of Neuroscience Research, vol. 61, no. 4, pp. 364–370, 2000. View at Publisher · View at Google Scholar
  130. X. Zhang, M. Hirai, S. Cantero et al., “Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue,” Journal of Cellular Biochemistry, vol. 112, no. 4, pp. 1206–1218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. M. W. Lee, M. S. Yang, J. S. Park, H. C. Kim, Y. J. Kim, and J. Choi, “Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood,” International Journal of Hematology, vol. 81, no. 2, pp. 126–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” Stem Cells, vol. 20, no. 6, pp. 530–541, 2002. View at Scopus
  133. N. Kotobuki, M. Hirose, Y. Takakura, and H. Ohgushi, “Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow,” Artificial Organs, vol. 28, no. 1, pp. 33–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Malgieri, E. Kantzari, M. P. Patrizi, and S. Gambardella, “Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art,” International Journal of Clinical and Experimental Medicine, vol. 3, no. 4, pp. 248–269, 2010. View at Scopus
  135. D. D. Carrade, V. K. Affolter, C. A. Outerbridge, et al., “Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions,” Cytotherapy, vol. 13, no. 10, pp. 1180–1192, 2011. View at Publisher · View at Google Scholar
  136. M. Krampera, S. Glennie, J. Dyson et al., “Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide,” Blood, vol. 101, no. 9, pp. 3722–3729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. S. A. Azizi, D. Stokes, B. J. Augelli, C. DiGirolamo, and D. J. Prockop, “Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3908–3913, 1998. View at Publisher · View at Google Scholar · View at Scopus
  138. S. L. Hu, H. S. Luo, J. T. Li et al., “Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells,” Critical Care Medicine, vol. 38, no. 11, pp. 2181–2189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. K. M. Fang, J. K. Chen, S. C. Hung et al., “Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair,” PLoS ONE, vol. 5, no. 12, Article ID e15299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. J. S. Oh, K. N. Kim, S. S. An, et al., “Cotransplantation of mouse neural stem cells (mNSCs) with adipose tissue-derived mesenchymal stem cells improves mNSC survival in a rat spinal cord injury model,” Cell Transplantation, vol. 20, no. 6, pp. 837–849, 2011.
  141. H. W. Park, J. S. Cho, C. K. Park, et al., “Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells,” PLoS One, vol. 7, no. 4, Article ID e35244, 2012.
  142. M. Zurita, L. Otero, C. Aguayo et al., “Cell therapy for spinal cord repair: optimization of biologic scaffolds for survival and neural differentiation of human bone marrow stromal cells,” Cytotherapy, vol. 12, no. 4, pp. 522–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. G. Lepski, C. E. Jannes, B. Strauss, S. K. N. Marie, and G. Nikkhah, “Survival and neuronal differentiation of mesenchymal stem cells transplanted into the rodent brain are dependent upon microenvironment,” Tissue Engineering A, vol. 16, no. 9, pp. 2769–2782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. M. S. Rao and M. P. Mattson, “Stem cells and aging: expanding the possibilities,” Mechanisms of Ageing and Development, vol. 122, no. 7, pp. 713–734, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. P. S. In't Anker, S. A. Scherjon, C. Kleijburg-Van Der Keur et al., “Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta,” Stem Cells, vol. 22, no. 7, pp. 1338–1345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. Y. Fukuchi, H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji, “Human placenta-derived cells have mesenchymal stem/progenitor cell potential,” Stem Cells, vol. 22, no. 5, pp. 649–658, 2004. View at Scopus
  147. Y. A. Romanov, V. A. Svintsitskaya, and V. N. Smirnov, “Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord,” Stem Cells, vol. 21, no. 1, pp. 105–110, 2003. View at Scopus
  148. C. Campagnoli, I. A. G. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono, and N. M. Fisk, “Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow,” Blood, vol. 98, no. 8, pp. 2396–2402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  149. L. L. Lu, Y. J. Liu, S. G. Yang et al., “Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials,” Haematologica, vol. 91, no. 8, pp. 1017–1028, 2006. View at Scopus
  150. A. Can and S. Karahuseyinoglu, “Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells,” Stem Cells, vol. 25, no. 11, pp. 2886–2895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. K. S. Park, Y. S. Lee, and K. S. Kang, “In vitro neuronal and osteogenic differentiation of mesenchymal stem cells from human umbilical cord blood,” Journal of Veterinary Science, vol. 7, no. 4, pp. 343–348, 2006. View at Scopus
  152. H. H. Ryu, B. J. Kang, S. S. Park, et al., “Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs,” Journal of Veterinary Medical Science, vol. 74, no. 12, pp. 1617–1630, 2012. View at Publisher · View at Google Scholar
  153. S. S. Park, Y. E. Byeon, H. Ryu, et al., “Comparison of canine umbilical cord blood-derived mesenchymal stem cell transplantation times: involvement of astrogliosis, inflammation, intracellular actin cytoskeleton pathways, and neurotrophin,” Cell Transplantation, vol. 20, no. 11-12, pp. 1867–1880, 2011.
  154. S. Temple, “Division and differentiation of isolated CNS blast cells in microculture,” Nature, vol. 340, no. 6233, pp. 471–473, 1989. View at Scopus
  155. B. A. Reynolds and S. Weiss, “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system,” Science, vol. 255, no. 5052, pp. 1707–1710, 1992. View at Scopus
  156. B. E. Reubinoff, P. Itsykson, T. Turetsky et al., “Neural progenitors from human embryonic stem cells,” Nature Biotechnology, vol. 19, no. 12, pp. 1134–1140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  157. M. V. T. Lobo, F. J. M. Alonso, C. Redondo et al., “Cellular characterization of epidermal growth factor-expanded free-floating neurospheres,” Journal of Histochemistry and Cytochemistry, vol. 51, no. 1, pp. 89–103, 2003. View at Scopus
  158. D. C. Lee, Y. C. Hsu, Y. F. Chung et al., “Isolation of neural stem/progenitor cells by using EGF/FGF1 and FGF1B promoter-driven green fluorescence from embryonic and adult mouse brains,” Molecular and Cellular Neuroscience, vol. 41, no. 3, pp. 348–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. K. Türeyen, R. Vemuganti, K. K. Bowen, K. A. Sailor, and R. J. Dempsey, “EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain,” Neurosurgery, vol. 57, no. 6, pp. 1254–1262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. J. Pruszak, K. C. Sonntag, H. A. Moe, R. Sanchez-Pernaute, and O. Isacson, “Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations,” Stem Cells, vol. 25, no. 9, pp. 2257–2268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. M. W. Weible and T. Chan-Ling, “Phenotypic characterization of neural stem cells from human fetal spinal cord: synergistic effect of LIF and BMP4 to generate astrocytes,” Glia, vol. 55, no. 11, pp. 1156–1168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. I. Singec, R. Knoth, R. P. Meyer et al., “Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology,” Nature Methods, vol. 3, no. 10, pp. 801–806, 2006. View at Publisher · View at Google Scholar · View at Scopus
  163. S. A. Louis, R. L. Rietze, L. Deleyrolle et al., “Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay,” Stem Cells, vol. 26, no. 4, pp. 988–996, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. Q. L. Cao, Y. P. Zhang, R. M. Howard, W. M. Walters, P. Tsoulfas, and S. R. Whittemore, “Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage,” Experimental Neurology, vol. 167, no. 1, pp. 48–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Ramón-Cueto and J. Avila, “Olfactory ensheathing glia: properties and function,” Brain Research Bulletin, vol. 46, no. 3, pp. 175–187, 1998. View at Publisher · View at Google Scholar · View at Scopus
  166. L. A. Carter, J. L. MacDonald, and A. J. Roskams, “Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype,” Journal of Neuroscience, vol. 24, no. 25, pp. 5670–5683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  167. C. T. Leung, P. A. Coulombe, and R. R. Reed, “Contribution of olfactory neural stem cells to tissue maintenance and regeneration,” Nature Neuroscience, vol. 10, no. 6, pp. 720–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. Z. Su and C. He, “Olfactory ensheathing cells: biology in neural development and regeneration,” Progress in Neurobiology, vol. 92, no. 4, pp. 517–532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. S. Techangamsuwan, I. Imbschweiler, R. Kreutzer, M. Kreutzer, W. Baumgärtner, and K. Wewetzer, “Similar behaviour and primate-like properties of adult canine Schwann cells and olfactory ensheathing cells in long-term culture,” Brain Research C, vol. 1240, pp. 31–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Lakatos, S. C. Barnett, and R. J. M. Franklin, “Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter,” Experimental Neurology, vol. 184, no. 1, pp. 237–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. Y. Li, T. Carlstedt, C. H. Berthold, and G. Raisman, “Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone,” Experimental Neurology, vol. 188, no. 2, pp. 300–308, 2004. View at Publisher · View at Google Scholar · View at Scopus
  172. D. A. O'Toole, A. K. West, and M. I. Chuah, “Effect of olfactory ensheathing cells on reactive astrocytes in vitro,” Cellular and Molecular Life Sciences, vol. 64, no. 10, pp. 1303–1309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. G. Raisman, “Olfactory ensheathing cells-another miracle cure for spinal cord injury?” Nature Reviews Neuroscience, vol. 2, no. 5, pp. 369–374, 2001. View at Publisher · View at Google Scholar · View at Scopus
  174. A. C. Lipson, J. Widenfalk, E. Lindqvist, T. Ebendal, and L. Olson, “Neurotrophic properties of olfactory ensheathing glia,” Experimental Neurology, vol. 180, no. 2, pp. 167–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Woodhouse, A. J. Vincent, M. A. Kozel et al., “Spinal cord tissue affects ensheathing cell proliferation and apoptosis,” NeuroReport, vol. 16, no. 7, pp. 737–740, 2005. View at Publisher · View at Google Scholar · View at Scopus
  176. A. Mackay-Sim and J. A. St John, “Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries,” Experimental Neurology, vol. 229, no. 1, pp. 174–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. A. Bohbot, “Olfactory ensheathing glia transplantation combined with LASERPONCTURE in human spinal cord injury: results measured by electromyography monitoring,” Cell Transplantation, vol. 19, no. 2, pp. 179–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. Q. Ao, A. J. Wang, G. Q. Chen, S. J. Wang, H. C. Zuo, and X. F. Zhang, “Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries,” Medical Hypotheses, vol. 69, no. 6, pp. 1234–1237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  179. W. Plunet, B. K. Kwon, and W. Tetzlaff, “Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy,” Journal of Neuroscience Research, vol. 68, no. 1, pp. 1–6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  180. W. Zhang, Q. Yan, Y. S. Zeng et al., “Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord,” Brain Research C, vol. 1359, pp. 256–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. E. M. Donnelly, P. M. Strappe, L. M. McGinley et al., “Lentiviral vector-mediated knockdown of the neuroglycan 2 proteoglycan or expression of neurotrophin-3 promotes neurite outgrowth in a cell culture model of the glial scar,” Journal of Gene Medicine, vol. 12, no. 11, pp. 863–872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. T. C. Dickson, R. S. Chung, G. H. McCormack, J. A. Staal, and J. C. Vickers, “Acute reactive and regenerative changes in mature cortical axons following injury,” NeuroReport, vol. 18, no. 3, pp. 283–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. S. D. Giovanni, “Molecular targets for axon regeneration: focus on the intrinsic pathways,” Expert Opinion on Therapeutic Targets, vol. 13, no. 12, pp. 1387–1398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  184. M. P. Côté, A. Hanna, M. A. Lemay et al., “Peripheral nerve grafts after cervical spinal cord injury in adult cats,” Experimental Neurology, vol. 225, no. 1, pp. 173–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  185. J. D. Houle, A. Amin, M. P. Cote, et al., “Combining peripheral nerve grafting and matrix modulation to repair the injured rat spinal cord,” Journal of Visualized Experiments, no. 33, p. 1324, 2009. View at Publisher · View at Google Scholar
  186. H. W. Park, M. J. Lim, H. Jung, S. P. Lee, K. S. Paik, and M. S. Chang, “Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury,” Glia, vol. 58, no. 9, pp. 1118–1132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. A. Pierucci, E. A. R. Duek, and A. L. R. De Oliveira, “Expression of basal lamina components by Schwann cells cultured on poly(lactic acid) (PLLA) and poly(caprolactone) (PCL) membranes,” Journal of Materials Science, vol. 20, no. 2, pp. 489–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Ghosh, L. M. Tuesta, R. Puentes, et al., “Extensive cell migration, axon regeneration, and improved function with polysialic acid-modified Schwann cells after spinal cord injury,” Glia, vol. 60, no. 6, pp. 979–992, 2012. View at Publisher · View at Google Scholar
  189. Y. Xu, L. Liu, Y. Li et al., “Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro,” Brain Research C, vol. 1239, pp. 49–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  190. Y. Xu, Z. Liu, L. Liu et al., “Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro,” BMC Neuroscience, vol. 9, p. 21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  191. J. A. Biernaskie, I. A. McKenzie, J. G. Toma, and F. D. Miller, “Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny,” Nature Protocols, vol. 1, no. 6, pp. 2803–2812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. C. D. Mills, A. J. Allchorne, R. S. Griffin, C. J. Woolf, and M. Costigan, “GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord,” Molecular and Cellular Neuroscience, vol. 36, no. 2, pp. 185–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  193. L. X. Deng, J. Hu, N. Liu et al., “GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury,” Experimental Neurology, vol. 229, no. 2, pp. 238–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  194. D. D. Pearse, A. R. Sanchez, F. C. Pereira et al., “Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: survival, migration, axon association, and functional recovery,” Glia, vol. 55, no. 9, pp. 976–1000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. M. Oudega, “Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord,” Acta Physiologica, vol. 189, no. 2, pp. 181–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  196. D. D. Pearse, F. C. Pereira, A. E. Marcillo et al., “cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury,” Nature Medicine, vol. 10, no. 6, pp. 610–616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  197. M. B. Bunge and D. D. Pearse, “Response to the report, “A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats” by Sharp et al. (this volume),” Experimental Neurology, vol. 233, no. 2, pp. 645–648, 2012. View at Publisher · View at Google Scholar
  198. S. Scott, J. E. Kranz, J. Cole et al., “Design, power, and interpretation of studies in the standard murine model of ALS,” Amyotrophic Lateral Sclerosis, vol. 9, no. 1, pp. 4–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  199. V. Sahni and J. A. Kessler, “Stem cell therapies for spinal cord injury,” Nature Reviews Neurology, vol. 6, no. 7, pp. 363–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  200. K. Martins-Taylor and R. H. Xu, “Concise review: genomic stability of human induced pluripotent stem cells,” Stem Cells, vol. 30, no. 1, pp. 22–27, 2012. View at Publisher · View at Google Scholar
  201. F. Bretzner, F. Gilbert, F. Baylis, and R. M. Brownstone, “Target populations for first-in-human embryonic stem cell research in spinal cord injury,” Cell Stem Cell, vol. 8, no. 5, pp. 468–475, 2011.
  202. J. Aznar and J. L. Sánchez, “Embryonic stem cells: are useful in clinic treatments?” Journal of physiology and biochemistry, vol. 67, no. 1, pp. 141–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  203. J. Lebkowski, “GRNOPC1: the world's first embryonic stem cell-derived therapy,” Interview with Jane Lebkowski, vol. 6, supplement 6, pp. 11–13, 2011.
  204. A. Pollack, Geron Is Shutting Down Its Stem Cell Clinical Trial, http://www.nytimes.com/2011/11/15/business/geron-is-shutting-down-its-stem-cell-clinical-trial.html, 2011.
  205. J. K. Alexander and P. G. Popovich, “Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration,” Progress in Brain Research, vol. 175, pp. 125–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  206. P. G. Hess, “Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural derivatives: ethics in the face of long-term uncertainty,” Accountability in Research, vol. 16, no. 4, pp. 175–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. M. Sundberg, P.-H. Andersson, E. Akesson, et al., “Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue,” Cell Transplant, vol. 20, no. 2, pp. 177–191, 2011. View at Publisher · View at Google Scholar
  208. R. Matsuda, M. Yoshikawa, H. Kimura et al., “Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development,” Cell Transplantation, vol. 18, no. 1, pp. 39–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  209. N. A. Kishk, H. Gabr, S. Hamdy et al., “Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 24, no. 8, pp. 702–708, 2010. View at Publisher · View at Google Scholar · View at Scopus
  210. Y. Bhanot, S. Rao, D. Ghosh, S. Balaraju, C. R. Radhika, and K. V. Satish Kumar, “Autologous mesenchymal stem cells in chronic spinal cord injury,” British Journal of Neurosurgery, vol. 25, no. 4, pp. 516–522, 2011. View at Publisher · View at Google Scholar · View at Scopus
  211. J. H. Park, D. Y. Kim, I. Y. Sung, et al., “Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans,” Neurosurgery, vol. 70, no. 5, pp. 1238–1247, 2012. View at Publisher · View at Google Scholar
  212. S. Karamouzian, S. N. Nematollahi-Mahani, N. Nakhaee, and H. Eskandary, “Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients,” Clinical Neurology and Neurosurgery, vol. 114, no. 7, pp. 935–939, 2012. View at Publisher · View at Google Scholar
  213. Z. Xian-Hu, N. Guang-Zhi, F. Shi-Qing, et al., “Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury, six cases, more than five years' follow-up,” Cell Transplantation, vol. 21, supplement 1, pp. S39–S47, 2012.
  214. H. Saberi, P. Moshayedi, H. R. Aghayan et al., “Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes,” Neuroscience Letters, vol. 443, no. 1, pp. 46–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  215. H. Saberi, M. Firouzi, Z. Habibi, et al., “Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases,” Journal of Neurosurgery, vol. 15, no. 5, pp. 515–525, 2011. View at Publisher · View at Google Scholar
  216. S. M. Cromer Berman, P. Walczak, and J. W. Bulte, “Tracking stem cells using magnetic nanoparticles,” Wiley Interdisciplinary Reviews, vol. 3, no. 4, pp. 343–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  217. E. Sykova and P. Jendelova, “In vivo tracking of stem cells in brain and spinal cord injury,” Progress in Brain Research, vol. 161, pp. 367–383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  218. A. Khurana, H. Nejadnik, R. Gawande, et al., “Intravenous ferumoxytol allows noninvasive MR imaging monitoring of macrophage migration into stem cell transplants,” Radiology, vol. 264, no. 3, pp. 803–811, 2012.
  219. X. Meng, H. C. Seton, L. T. Lu, I. A. Prior, N. T. K. Thanh, and B. Song, “Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection,” Nanoscale, vol. 3, no. 3, pp. 977–984, 2011. View at Publisher · View at Google Scholar · View at Scopus
  220. J. Shen, L. N. Cheng, X. M. Zhong, X. H. Duan, R. M. Guo, and G. B. Hong, “Efficient in vitro labeling rabbit neural stem cell with paramagnetic Gd-DTPA and fluorescent substance,” European Journal of Radiology, vol. 75, no. 3, pp. 397–405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  221. K. Andreas, R. Georgieva, M. Ladwig, et al., “Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking,” Biomaterials, vol. 33, no. 18, pp. 4515–4525, 2012. View at Publisher · View at Google Scholar
  222. J. H. Lee, M. J. Jung, Y. H. Hwang, et al., “Heparin-coated superparamagnetic iron oxide for in vivo MR imaging of human MSCs,” Biomaterials, vol. 33, no. 19, pp. 4861–4871, 2012. View at Publisher · View at Google Scholar
  223. A. M. Reddy, B. K. Kwak, H. J. Shim et al., “In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticles using 3.0T MRI,” Journal of Korean Medical Science, vol. 25, no. 2, pp. 211–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  224. Y. Liu, Z. J. He, B. Xu et al., “Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury,” Brain Research, vol. 1391, pp. 24–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  225. S. C. Berman, C. Galpoththawela, A. A. Gilad, J. W. M. Bulte, and P. Walczak, “Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells,” Magnetic Resonance in Medicine, vol. 65, no. 2, pp. 564–574, 2011. View at Publisher · View at Google Scholar · View at Scopus