About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 789184, 6 pages
http://dx.doi.org/10.1155/2013/789184
Research Article

The Effect of Apigenin on Pharmacokinetics of Imatinib and Its Metabolite N-Desmethyl Imatinib in Rats

1The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
2School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
3Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo 315010, China

Received 26 June 2013; Accepted 30 October 2013

Academic Editor: Graziano Onder

Copyright © 2013 Xian-yun Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Wu, F. Meng, H. Lu et al., “Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells,” Blood, vol. 111, no. 7, pp. 3821–3829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. G. Kris, R. B. Natale, R. S. Herbst et al., “Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial,” The Journal of the American Medical Association, vol. 290, no. 16, pp. 2149–2158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Litz and G. W. Krystal, “Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1α activity and vascular endothelial growth factor expression in small cell lung cancer cells,” Molecular Cancer Therapeutics, vol. 5, no. 6, pp. 1415–1422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Talpaz, N. P. Shah, H. Kantarjian et al., “Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias,” The New England Journal of Medicine, vol. 354, no. 24, pp. 2531–2541, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. G. D. Demetri, M. von Mehren, C. D. Blanke et al., “Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors,” The New England Journal of Medicine, vol. 347, no. 7, pp. 472–480, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Burger and K. Nooter, “Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib,” Cell Cycle, vol. 3, no. 12, pp. 1502–1505, 2004. View at Scopus
  7. I. N. Beara, M. M. Lesjak, E. D. Jovin et al., “Plantain (Plantago L.) species as novel sources of flavonoid antioxidants,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 9268–9273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Li, H. Du, L. Wang et al., “Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers,” Journal of Agricultural and Food Chemistry, vol. 57, no. 18, pp. 8496–8503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Y. Lu, D. L. Sun, Z. J. Chen et al., “Relative contribution of small and large intestine to deglycosylation and absorption of flavonoids from Chrysanthemun morifolium extract,” Journal of Agricultural and Food Chemistry, vol. 58, no. 19, pp. 10661–10667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Panoino, F. L. Courts, S. Lombardo, G. Mauromicale, and G. Williamson, “Caffeoylquinic acids and flavonoids in the immature Inflorescence of globe artichoke, wild cardoon, and cultivated cardoon,” Journal of Agricultural and Food Chemistry, vol. 58, no. 2, pp. 1026–1031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Qiu, Q. Liu, and T. Beta, “Antioxidant activity of commercial wild rice and identification of flavonoid compounds in active fractions,” Journal of Agricultural and Food Chemistry, vol. 57, no. 16, pp. 7543–7551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Matsumoto, S. Kimura, H. Segawa et al., “Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anti-cancer agents against small cell lung cancer cell lines,” Lung Cancer, vol. 47, no. 1, pp. 31–39, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Tarumoto, T. Nagai, K. Ohmine et al., “Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line,” Experimental Hematology, vol. 32, no. 4, pp. 375–381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Du, C. Sun, Z. Liang, Y. Han, and J. Yu, “Antibacterial activity of hypocrellin A against Staphylococcus aureus,” World Journal of Microbiology and Biotechnology, vol. 28, no. 11, pp. 3151–3157, 2012. View at Publisher · View at Google Scholar
  15. P. Lampropoulos, M. Lambropoulou, A. Papalois, et al., “The role of apigenin in an experimental model of acute pancreatitis,” Journal of Surgical Research, vol. 183, no. 1, pp. 129–137, 2013. View at Publisher · View at Google Scholar
  16. H. Shimada, M. Eto, M. Ohtaguro et al., “Differential mechanisms for the inhibition of human cytochrome P450 1A2 by apigenin and genistein,” Journal of Biochemical and Molecular Toxicology, vol. 24, no. 4, pp. 230–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. C. Ho, D. J. Saville, and S. Wanwimolruk, “Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 3, pp. 217–227, 2001. View at Scopus
  18. M. Hellen, B. Adrian, and W. Guenther, “Bioavailability of apigenin from apiin-rich parsley in humans,” Annals of Nutrition and Metabolism, vol. 50, no. 3, pp. 167–172, 2006. View at Scopus
  19. P. Hodek, P. Trefil, and M. Stiborová, “Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450,” Chemico-Biological Interactions, vol. 139, no. 1, pp. 1–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Hunt, W. R. Westerkam, and G. M. Stave, “Effect of age and gender on the activity of human hepatic CYP3A,” Biochemical Pharmacology, vol. 44, no. 2, pp. 275–283, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Li, M. O. Karlsson, J. Brahmer et al., “CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors,” Journal of the National Cancer Institute, vol. 98, no. 23, pp. 1714–1723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. S. Yang, J. D. Lambert, and S. Sang, “Antioxidative and anti-carcinogenic activities of tea polyphenols,” Archives of Toxicology, vol. 83, no. 1, pp. 11–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. J. Surh and L. R. Ferguson, “Dietary and medicinal antimutagens and anticarcinogens: molecular mechanisms and chemopreventive potential—highlights of a symposium,” Mutation Research, vol. 523-524, pp. 1–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Panigrahi and R. Naithani, “Imatinib mesylate: a designer drug,” Journal of Association of Physicians of India, vol. 54, pp. 203–206, 2006. View at Scopus
  25. Y. Wang, L. Zhou, C. Dutreix et al., “Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia,” British Journal of Clinical Pharmacology, vol. 65, no. 6, pp. 885–892, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Yamakawa, A. Hamada, R. Nakashima et al., “Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia,” Therapeutic Drug Monitoring, vol. 33, no. 2, pp. 244–250, 2011. View at Scopus
  27. A. M. Filppula, M. Neuvonen, J. Laitila, P. J. Neuvonen, and J. T. Backman , “Autoinhibition of CYP3A4 leads to important role of CYP2C8 in imatinib metabolism: variability in CYP2C8 activity may alter plasma concentrations and response,” Drug Metabolism and Disposition, vol. 41, no. 1, pp. 50–59, 2013. View at Publisher · View at Google Scholar