About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 790570, 15 pages
http://dx.doi.org/10.1155/2013/790570
Research Article

Evaluation of the Presence of Endocrine-Disrupting Compounds in Dissolved and Solid Wastewater Treatment Plant Samples of Gran Canaria Island (Spain)

Departamento de Química, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

Received 13 May 2013; Revised 29 July 2013; Accepted 31 July 2013

Academic Editor: Koichiro Wada

Copyright © 2013 T. Vega-Morales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. A. Baker, “Endocrine disrupters—testing strategies to assess human hazard,” Toxicology in Vitro, vol. 15, no. 4-5, pp. 413–419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. S. Fisher, “Are all EDC effects mediated via steroid hormone receptors?” Toxicology, vol. 205, no. 1-2, pp. 33–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. W. V. Welshons, K. A. Thayer, B. M. Judy, J. A. Taylor, E. M. Curran, and F. S. vom Saal, “Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity,” Environmental Health Perspectives, vol. 111, no. 8, pp. 994–1006, 2003. View at Scopus
  4. C. Sonnenschein and A. M. Soto, “An updated review of environmental estrogen and androgen mimics and antagonists,” Journal of Steroid Biochemistry and Molecular Biology, vol. 65, no. 1–6, pp. 143–150, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. T. R. Gleason and D. E. Nacci, “Risks of endocrine-disrupting compounds to wildlife: extrapolating from effects on individuals to population response,” Human and Ecological Risk Assessment, vol. 7, no. 5, pp. 1027–1042, 2001. View at Scopus
  6. M. Yang, M. S. Park, and H. S. Lee, “Endocrine disrupting chemicals: human exposure and health risks,” Journal of Environmental Science and Health C, vol. 24, no. 2, pp. 183–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Toppari, J. C. Larsen, P. Christiansen et al., “Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors,” Endocrine Reviews, vol. 14, pp. 459–479, 1993.
  8. M. F. Fernández, B. Olmos, A. Granada et al., “Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case-control study,” Environmental Health Perspectives, vol. 115, pp. 8–14, 2007. View at Scopus
  9. R. M. Sharpe, “Declining sperm count in men—is there an endocrine cause?” Journal of Endocrinology, vol. 136, no. 3, pp. 357–360, 1993. View at Scopus
  10. R. J. Kavlock and G. T. Ankley, “A perspective on the risk assessment process for endocrine-disruptive effects on wildlife and human health,” Risk Analysis, vol. 16, no. 6, pp. 731–739, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. D. O. Norris and J. A. Carr, Endrocrine Disrupters—Biological Bases For Health Effects in Wildlife and Humans, Oxford University Press, Oxford, UK, 2006.
  12. J. G. Vos, E. Dybing, H. A. Greim et al., “Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation,” Critical Reviews in Toxicology, vol. 30, no. 1, pp. 71–133, 2000. View at Scopus
  13. E. D. Clotfelter, A. M. Bell, and K. R. Levering, “The role of animal behaviour in the study of endocrine-disrupting chemicals,” Animal Behaviour, vol. 68, no. 4, pp. 665–676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C. G. Campbell, S. E. Borglin, F. B. Green, A. Grayson, E. Wozei, and W. T. Stringfellow, “Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review,” Chemosphere, vol. 65, no. 8, pp. 1265–1280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Körner, U. Bolz, W. Süßmuth et al., “Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany,” Chemosphere, vol. 40, no. 9–11, pp. 1131–1142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Wagner and J. Oehlmann, “Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles,” Chemosphere, vol. 40, pp. 1131–1142, 2000.
  17. B. V. Rutishauser, M. Pesonen, B. I. Escher et al., “Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids,” Environmental Toxicology and Chemistry, vol. 23, no. 4, pp. 857–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Brix, C. Postigo, S. González et al., “Analysis and occurrence of alkylphenolic compounds and estrogens in a European river basin and an evaluation of their importance as priority pollutants,” Analytical and Bioanalytical Chemistry, vol. 396, no. 3, pp. 1301–1309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Vega-Morales, Z. Sosa-Ferrera, and J. J. Santana-Rodríguez, “Development and optimisation of an on-line solid phase extraction coupled to ultra-high-performance liquid chromatography-tandem mass spectrometry methodology for the simultaneous determination of endocrine disrupting compounds in wastewater samples,” Journal of Chromatography A, vol. 1230, pp. 66–76, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Murk, J. Legler, M. M. H. van Lipzig et al., “Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays,” Environmental Toxicology and Chemistry, vol. 21, no. 1, pp. 16–23, 2002. View at Scopus
  21. Q. Sun, S. Deng, J. Huang, G. Shen, and G. Yu, “Contributors to estrogenic activity in wastewater from a large wastewater treatment plant in Beijing, China,” Environmental Toxicology and Pharmacology, vol. 25, no. 1, pp. 20–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. E. Purdom, P. A. Hardiman, V. J. Bye, N. C. Eno, C. R. Tyler, and J. P. Sumpter, “Estrogenic effects of effluents from sewage treatment works,” Chemistry and Ecology, vol. 8, no. 4, pp. 275–285, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Legler, L. M. Zeinstra, F. Schuitemaker et al., “Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity,” Environmental Science and Technology, vol. 36, no. 20, pp. 4410–4415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Song, Y. Xu, Q. Jiang et al., “Measurement of estrogenic activity in sediments from Haihe and Dagu River, China,” Environment International, vol. 32, no. 5, pp. 676–681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Viganò, E. Benfenati, A. V. Cauwenberge et al., “Estrogenicity profile and estrogenic compounds determined in river sediments by chemical analysis, ELISA and yeast assays,” Chemosphere, vol. 73, no. 7, pp. 1078–1089, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Duft, U. Schulte-Oehlmann, L. Weltje, M. Tillmann, and J. Oehlmann, “Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum,” Aquatic Toxicology, vol. 64, no. 4, pp. 437–449, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Pojana, A. Bonfà, F. Busetti, A. Collarin, and A. Marcomini, “Estrogenic potential of the Venice, Italy, lagoon waters,” Environmental Toxicology and Chemistry, vol. 23, no. 8, pp. 1874–1880, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Vega-Morales, Z. Sosa-Ferrera, and J. J. Santana-Rodríguez, “Determination of various estradiol mimicking-compounds in sewage sludge by the combination of microwave-assisted extraction and LC-MS/MS,” Talanta, vol. 85, no. 4, pp. 1825–1834, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Vega-Morales, Z. Sosa-Ferrera, and J. J. Santana-Rodríguez, “Determination of alkylphenol polyethoxylates, bisphenol-A, 17α-ethynylestradiol and 17β-estradiol and its metabolites in sewage samples by SPE and LC/MS/MS,” Journal of Hazardous Materials, vol. 183, no. 1–3, pp. 701–711, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Céspedes, M. Petrovic, D. Raldúa et al., “Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinant yeast assay and chemical analysis by LC-ESI-MS,” Analytical and Bioanalytical Chemistry, vol. 378, pp. 697–708, 2004.
  31. H.-R. Aerni, B. Kobler, B. V. Rutishauser et al., “Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents,” Analytical and Bioanalytical Chemistry, vol. 378, pp. 688–696, 2004.
  32. M. Petrović and D. Barceló, “The stability of non-ionic surfactants and linear alkyl sulfonates in a water matrix and on solid-phase extraction cartridges,” Fresenius' Journal of Analytical Chemistry, vol. 368, no. 7, pp. 676–683, 2000. View at Scopus
  33. R. Céspedes, S. Lacorte, A. Ginebreda, and D. Barceló, “Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain),” Environmental Pollution, vol. 153, no. 2, pp. 384–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Gutendorf and J. Westendorf, “Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens,” Toxicology, vol. 153, pp. 79–89, 2001.
  35. J. Legler, M. Dennekamp, A. D. Vethaak et al., “Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays,” Science of the Total Environment, vol. 293, no. 1–3, pp. 69–83, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Pojana, A. Gomiero, N. Jonkers, and A. Marcomini, “Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon,” Environment International, vol. 33, no. 7, pp. 929–936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. G.-G. Ying, B. Williams, and R. Kookana, “Environmental fate of alkylphenols and alkylphenol ethoxylates—a review,” Environment International, vol. 28, no. 3, pp. 215–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Petrovic, A. Diaz, F. Ventura, and D. Barceló, “Simultaneous determination of halogenated derivatives of alkylphenol ethoxylates and their metabolites in sludges, river sediments, and surface, drinking, and wastewaters by liquid chromatography-mass spectrometry,” Analytical Chemistry, vol. 73, no. 24, pp. 5886–5895, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. K. H. Langford and J. N. Lester, Endocrine Disrupters in Wastewater and Sludge Treatment Processes, J. W. Brikett, J. N. Lester, Eds., CRC Press, Boca Raton, Fla, USA, 2002.
  40. V. Andreu, E. Ferrer, J. L. Rubio, G. Font, and Y. Picó, “Quantitative determination of octylphenol, nonylphenol, alkylphenol ethoxylates and alcohol ethoxylates by pressurized liquid extraction and liquid chromatography-mass spectrometry in soils treated with sewage sludges,” Science of the Total Environment, vol. 378, no. 1-2, pp. 124–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P.-D. Hansen, H. Dizer, B. Hock et al., “Vitellogenin—a biomarker for endocrine disruptors,” Trends in Analytical Chemistry, vol. 17, no. 7, pp. 448–451, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. G.-G. Ying and R. S. Kookana, “Sorption and degradation of estrogen-like-endocrine disrupting chemicals in soil,” Environmental Toxicology and Chemistry, vol. 24, no. 10, pp. 2640–2645, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. G.-G. Ying and R. S. Kookana, “Degradation of five selected endocrine-disrupting chemicals in seawater and marine sediment,” Environmental Science and Technology, vol. 37, no. 7, pp. 1256–1260, 2003. View at Publisher · View at Google Scholar · View at Scopus