About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 790842, 11 pages
http://dx.doi.org/10.1155/2013/790842
Research Article

Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

1Clinical and Basic Research Division, National Institute of Traumatology and Orthopaedics, Avenida Brasil 500, 20940-070 Rio de Janeiro, RJ, Brazil
2Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-970 Rio de Janeiro, RJ, Brazil
3Laboratory of Nuclear Instrumentation, COPPE, Federal University of Rio de Janeiro, 21941-970 Rio de Janeiro, RJ, Brazil
4VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
5University of California, Los Angeles, CA 90095, USA

Received 30 November 2012; Revised 23 February 2013; Accepted 14 March 2013

Academic Editor: George E. Plopper

Copyright © 2013 Verônica Fernandes Vianna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. G. Robey, “Cell sources for bone regeneration: the good, the bad, and the ugly (but promising),” Tissue Engeneering B, vol. 17, no. 6, pp. 423–430, 2011. View at Publisher · View at Google Scholar
  2. A. I. Kuralesova, A. M. Leontovich, I. L. Krukovets, and A. Y. Fridenshtein, “Quantitative characteristics of hematopoietic microenvironment transfer,” Bulletin of Experimental Biology and Medicine, vol. 98, no. 6, pp. 1733–1736, 1984. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Owen and A. J. Friedenstein, “Stromal stem cells: marrow-derived osteogenic precursors,” Ciba Foundation Symposium, vol. 136, pp. 42–60, 1988. View at Scopus
  4. A. I. Caplan, “Mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 641–650, 1991. View at Scopus
  5. P. Bianco and P. G. Robey, “Marrow stromal stem cells,” Journal of Clinical Investigation, vol. 105, no. 12, pp. 1663–1668, 2000. View at Scopus
  6. R. S. Y. Wong, “Mesenchymal stem cells: angels or demons?” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 459510, 8 pages, 2011. View at Publisher · View at Google Scholar
  7. K. V. Petrakova, “Heterotopic ossification in the rat kidney in ischemia,” Arkhiv Anatomii, Gistologii i Embriologii, vol. 44, pp. 112–116, 1963. View at Scopus
  8. A. J. Friedenstein, U. F. Deriglasova, and N. N. Kulagina, “Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method,” Experimental Hematology, vol. 2, no. 2, pp. 83–92, 1974. View at Scopus
  9. A. J. Friedenstein, I. I. Piatetzky-Shapiro, and K. V. Petrakova, “Osteogenesis in transplants of bone marrow cells,” Journal of Embryology and Experimental Morphology, vol. 16, no. 3, pp. 381–390, 1966. View at Scopus
  10. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. S. A. Kuznetsov, P. H. Krebsbach, K. Satomura et al., “Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo,” Journal of Bone and Mineral Research, vol. 12, no. 9, pp. 1335–1347, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Muraglia, R. Cancedda, and R. Quarto, “Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model,” Journal of Cell Science, vol. 113, no. 7, pp. 1161–1166, 2000. View at Scopus
  14. B. Sacchetti, A. Funari, S. Michienzi et al., “Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment,” Cell, vol. 131, no. 2, pp. 324–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Bianco, M. Riminucci, S. Gronthos, and P. G. Robey, “Bone marrow stromal stem cells: nature, biology, and potential applications,” Stem Cells, vol. 19, no. 3, pp. 180–192, 2001. View at Scopus
  16. P. Bianco, S. A. Kuznetsov, M. Riminucci, and P. Gehron Robey, “Postnatal skeletal stem cells,” Methods in Enzymology, vol. 419, pp. 117–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal stem cells: revisiting history, concepts, and assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Gronthos, A. C. W. Zannettino, S. J. Hay et al., “Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow,” Journal of Cell Science, vol. 116, no. 9, pp. 1827–1835, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Leonardi, G. Ciapetti, S. R. Baglìo, V. Devescovi, N. Baldini, and D. Granchi, “Osteogenic properties of late adherent subpopulations of human bone marrow stromal cells,” Histochemistry and Cell Biology, vol. 132, no. 5, pp. 547–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. W. Long, J. L. Williams, and K. G. Mann, “Expression of human bone-related proteins in the hematopoietic microenvironment,” Journal of Clinical Investigation, vol. 86, no. 5, pp. 1387–1395, 1990. View at Scopus
  21. C. Wan, Q. He, M. McCaigue, D. Marsh, and G. Li, “Nonadherent cell population of human marrow culture is a complementary source of mesenchymal stem cells (MSCs),” Journal of Orthopaedic Research, vol. 24, no. 1, pp. 21–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Zhang, C. Niu, L. Ye et al., “Identification of the haematopoietic stem cell niche and control of the niche size,” Nature, vol. 425, no. 6960, pp. 836–841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. B. M. Abdallah, N. Ditzel, and M. Kassem, “Assessment of bone formation capacity using in vivo transplantation assays: procedure and tissue analysis,” Methods in Molecular Biology, vol. 455, pp. 89–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Baksh, J. E. Davies, and P. W. Zandstra, “Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion,” Experimental Hematology, vol. 31, no. 8, pp. 723–732, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Prosper and C. M. Verfaillie, “Regulation of hematopoiesis through adhesion receptors,” Journal of Leukocyte Biology, vol. 69, no. 3, pp. 307–316, 2001. View at Scopus
  26. M. Ogawa, “Differentiation and proliferation of hematopoietic stem cells,” Blood, vol. 81, no. 11, pp. 2844–2853, 1993. View at Scopus
  27. M. H. Mankani, S. A. Kuznetsov, and P. G. Robey, “Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density,” Experimental Hematology, vol. 35, no. 6, pp. 995–1004, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Kanczler and R. O. C. Oreffo, “Osteogenesis and angiogenesis: the potential for engineering bone,” European Cells and Materials, vol. 15, pp. 100–114, 2008. View at Scopus
  29. L. M. Calvi, G. B. Adams, K. W. Weibrecht et al., “Osteoblastic cells regulate the haematopoietic stem cell niche,” Nature, vol. 425, no. 6960, pp. 841–846, 2003. View at Publisher · View at Google Scholar · View at Scopus