About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 794643, 10 pages
http://dx.doi.org/10.1155/2013/794643
Research Article

MLST Genotypes and Antibiotic Resistance of Campylobacter spp. Isolated from Poultry in Grenada

1School of Veterinary Medicine, St. George's University, P.O. Box 7, Grenada, West Indies
2College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA

Received 7 November 2012; Revised 28 December 2012; Accepted 7 January 2013

Academic Editor: Fabio Ribeiro Braga

Copyright © 2013 Diana Stone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Smith, Epidemiology of Campylobacter in Humans, Food and Drug Administration, US Department of Health & Human Services, 2009.
  2. http://www.cdc.gov/nczved/divisions/dfbmd/diseases/campylobacter/.
  3. J. E. Moore, D. Corcoran, J. S. G. Dooley et al., “Campylobacter,” Veterinary Research, vol. 36, pp. 351–382, 2005.
  4. J. M. Ketley, “Pathogeneis of enteric infection by Campylobacter,” Microbiology, vol. 143, no. 1, pp. 5–21, 1997. View at Scopus
  5. R. A. Hughes and A. C. Keat, “Reiter's syndrome and reactive arthritis: a current view,” Seminars in Arthritis and Rheumatism, vol. 24, no. 3, pp. 190–210, 1994. View at Scopus
  6. I. Nachamkin, B. M. Allow, and T. Ho, “Campylobacter species and Guillain-Barré syndrome,” Clinical Microbiology Reviews, vol. 11, pp. 555–567, 1998.
  7. J. E. Moore, M. D. Barton, I. S. Blair et al., “The epidemiology of antibiotic resistance in Campylobacter,” Microbes and Infection, vol. 8, no. 7, pp. 1955–1966, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Horrocks, R. C. Anderson, D. J. Nisbet, and S. C. Ricke, “Incidence and ecology of Campylobacter jejuni and coli in animals,” Anaerobe, vol. 15, no. 1-2, pp. 18–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. K. Lee, S. J. Billington, and L. A. Joens, “Potential virulence and antimicrobial susceptibility of Campylobacter jejuni isolates from food and companion animals,” Foodborne Pathogens and Disease, vol. 1, no. 4, pp. 223–230, 2004. View at Scopus
  10. E. Rahimi, “Occurrence and resistance to antibiotics of Campylobacter spp. in retail raw sheep and goat meat in Shahr-e Kord, Iran,” Global Veterinary, vol. 4, pp. 504–509, 2010.
  11. E. Rahimi, M. Ameri, and H. R. Kazemeini, “Prevalence and antimicrobial resistance of Campylobacter species isolated from raw camel, beef, lamb, and goat meat in Iran,” Foodborne Pathogens and Disease, vol. 7, no. 4, pp. 443–447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Anonymous, Grenada Ministry of Agriculture, Annual Agriculture Review publication.
  13. http://www.paho.org/hia/archivosvol2/paisesing/Grenada%20English.pdf#search="gast roenteritis Grenada.
  14. http://new.paho.org/carec/dmdocuments/9.%20GE.pdf.
  15. H. Hariharan, S. Sharma, A. Chikweto, V. Matthew, and C. DeAllie, “Antimicrobial drug resistance as determined by the E-test in Campylobacter jejuni, C. coli, and C. lari isolates from the ceca of broiler and layer chickens in Grenada,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 32, no. 1, pp. 21–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. S. Miller, W. G. Miller, M. Behringer, H. Hariharan, V. Matthew, and O. A. Oyarzabal, “DNA identification and characterization of Campylobacter jejuni and Campylobacter coli isolated from caecal samples of chickens in Grenada,” Journal of Applied Microbiology, vol. 108, no. 3, pp. 1041–1049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Roopnarine, D. Stone, H. Hariharan et al., “Fluoroquinolone and metronidazole resistance of Campylobacter spp from broiler chickens and antimicrobial use on farms in Grenada, West Indies,” Journal of Animal Research, vol. 2, no. 3, pp. 219–227, 2012.
  18. A. M. Werno, J. D. Klena, G. M. Shaw, and D. R. Murdoch, “Fatal case of Campylobacter lari prosthetic joint infection and bacteremia in an immunocompetent patient,” Journal of Clinical Microbiology, vol. 40, no. 3, pp. 1053–1055, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Luber, E. Bartelt, E. Genschow, J. Wagner, and H. Hahn, “Comparison of broth microdilution, E test, and agar dilution methods for antibiotic susceptibility testing of Campylobacter jejuni and Campylobacter coli,” Journal of Clinical Microbiology, vol. 41, no. 3, pp. 1062–1068, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Guévremont, É. Nadeau, M. Sirois, and S. Quessy, “Antimicrobial susceptibilities of thermophilic Campylobacter from humans, swine, and chicken broilers,” Canadian Journal of Veterinary Research, vol. 70, no. 2, pp. 81–86, 2006. View at Scopus
  21. P. U. Quinn, B. K. Markey, F. C. Leonard, E. S. FitzPatrick, S. Fanning, and P. J. Hartigen, “Campylobacter and Helicobacter species,” in Veterinary Microbiology and Microbial Disease, p. 345, Blackwell, West Sussez, UK, 2nd edition, 2011.
  22. K. E. Dingle, F. M. Colles, R. Ure et al., “Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation,” Emerging Infectious Diseases, vol. 8, no. 9, pp. 949–955, 2002. View at Scopus
  23. L. M. Schouls, S. Reulen, B. Duim et al., “Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 15–26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. http://pubmlst.org/analysis.
  25. S. E. Wirz, G. Overesch, P. Kuhnert, and B. M. Korczak, “Genotype and antibiotic resistance analyses of campylobacter isolates from ceca and carcasses of slaughtered broiler flocks,” Applied and Environmental Microbiology, vol. 76, no. 19, pp. 6377–6386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Avrain, F. Humbert, R. L'Hospitalier, P. Sanders, C. Vernozy-Rozand, and I. Kempf, “Antimicrobial resistance in Campylobacter from broilers: association with production type and antimicrobial use,” Veterinary Microbiology, vol. 96, no. 3, pp. 267–276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Cardinale, J. A. Dromigny, F. Tall, M. Ndiaye, M. Konte, and J. D. Perrier Gros-Claude, “Antimicrobial susceptibility of Campylobacter strains isolated from chicken carcasses in Senegal,” Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux, vol. 55, pp. 259–264, 2002.
  28. A. Deckert, A. Valdivieso-Garcia, R. Reid-Smith et al., “Prevalence and antimicrobial resistance in Campylobacter spp. Isolated from retail chicken in two health units in Ontario,” Journal of Food Protection, vol. 73, no. 7, pp. 1317–1324, 2010. View at Scopus
  29. W. F. Jacobs-Reitsma, C. A. Kan, and N. M. Bolder, “The induction of quinolone resistance in Campylobacter bacteria in broilers by quinolone treatment,” Letters in Applied Microbiology, vol. 19, no. 4, pp. 228–231, 1994. View at Scopus
  30. E. Cardinale, V. Rose, J. D. Perrier Gros-Claude et al., “Genetic characterization and antibiotic resistance of Campylobacter spp. isolated from poultry and humans in Senegal,” Journal of Applied Microbiology, vol. 100, no. 1, pp. 209–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Alter, R. M. Weber, A. Hamedy, and G. Glünder, “Carry-over of thermophilic Campylobacter spp. between sequential and adjacent poultry flocks,” Veterinary Microbiology, vol. 147, no. 1-2, pp. 90–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Korolik, M. R. Alderton, S. C. Smith, J. Chang, and P. J. Coloe, “Isolation and molecular analysis of colonising and non-colonising strains of Campylobacter jejuni and Campylobacter coli following experimental infection of young chickens,” Veterinary Microbiology, vol. 60, no. 2–4, pp. 239–249, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. F. M. Colles, N. D. McCarthy, R. Layton, and M. C. J. Maiden, “The prevalence of Campylobacter amongst a free-range broiler breeder flock was primarily affected by flock age,” PLoS One, vol. 6, Article ID e22825, 2011.
  34. S. K. Sheppard, F. Colles, J. Richardson et al., “Host association of Campylobacter genotypes transcends geographic variations,” Applied and Environmental Microbiology, vol. 76, no. 15, pp. 5269–5277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Thakur, D. G. White, P. F. McDermott et al., “Genotyping of Campylobacter coli isolated from humans and retail meats using multilocus sequence typing and pulsed-field gel electrophoresis,” Journal of Applied Microbiology, vol. 106, no. 5, pp. 1722–1733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. F. McDermott, S. M. Bodeis, L. L. English et al., “Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones,” Journal of Infectious Diseases, vol. 185, no. 6, pp. 837–840, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Luo, O. Sahin, J. Lin, L. O. Michel, and Q. Zhang, “In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 390–394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Cui, B. Ge, J. Zheng, and J. Meng, “Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores,” Applied and Environmental Microbiology, vol. 71, no. 7, pp. 4108–4111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Smith and P. M. Fratamico, “Fluoroquinolone resistance in Campylobacter,” Journal of Food Protection, vol. 73, no. 6, pp. 1141–1152, 2010. View at Scopus
  40. K. A. D. M. Oliveira, R. C. S. Mendonca, G. V. De Oliveira, and A. R. Sodre, “Antibiotic resistance of Campylobacter isolated from automated broiler farms,” Journal of Food Safety, vol. 26, pp. 82–91, 2005.
  41. X. Chen, G. W. Naren, C. M. Wu et al., “Prevalence and antimicrobial resistance of Campylobacter isolates in broilers from China,” Veterinary Microbiology, vol. 144, no. 1-2, pp. 133–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. M. Kim, J. Hong, W. Bae, C. Koo, S. H. Kim, and Y. H. Park, “Prevalence, antibiograms, and transferable tet(O) plasmid of Campylobacter jejuni and Campylobacter coli isolated from raw chicken, pork, and human clinical cases in Korea,” Journal of Food Protection, vol. 73, no. 8, pp. 1430–1437, 2010. View at Scopus
  43. K. Pedersen and A. Wedderkopp, “Resistance to quinolones in Campylobacter jejuni and Campylobacter coli from Danish broilers at farm level,” Journal of Applied Microbiology, vol. 94, no. 1, pp. 111–119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. T. J. Humphrey, F. Jørgensen, J. A. Frost et al., “Prevalence and subtypes of ciprofloxacin-resistant Campylobacter spp. in commercial poultry flocks before, during, and after treatment with fluoroquinolones,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 2, pp. 690–698, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Sonnevend, V. O. Rotimi, J. Kolodziejek, A. Usmani, N. Nowotny, and T. Pal, “High level of ciprofloxacin resistance and its molecular background among Campylobacter jejuni strains isolated in the United Arab Emirates,” Journal of Medical Microbiology, vol. 55, no. 11, pp. 1533–1538, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. U. Ledergerber, G. Regula, R. Stephan, J. Danuser, B. Bissig, and K. D. C. Stark, “Risk factors for antibiotic resistance in Campylobacter spp. isolated from raw poultry meat in Switzerland,” BMC Public Health, vol. 3, article 1, pp. 1–9, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Asai, K. Harada, K. Ishihara et al., “Association of antimicrobial resistance in Campylobacter isolated from food-producing animals with antimicrobial use on farms,” Japanese Journal of Infectious Diseases, vol. 60, no. 5, pp. 290–294, 2007. View at Scopus
  48. A. Hernández, M. B. Sánchez, and J. L. Martínez, “Quinolone resistance: much more than predicted,” Frontiers in Microbiology, vol. 2, pp. 1–6, 2011.
  49. A. D. Kinana, E. Cardinale, F. Tall et al., “Genetic diversity and quinolone resistance in Campylobacter jejuni isolates from poultry in Senegal,” Applied and Environmental Microbiology, vol. 72, no. 5, pp. 3309–3313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. A. D. Kinana, E. Cardinale, I. Bahsoun et al., “Campylobacter coli isolates derived from chickens in Senegal: diversity, genetic exchange with Campylobacter jejuni and quinolone resistance,” Research in Microbiology, vol. 158, no. 2, pp. 138–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Habib, W. G. Miller, M. Uyttendaele, K. Houf, and L. De Zutter, “Clonal population structure and antimicrobial resistance of Campylobacter jejuni in chicken meat from Belgium,” Applied and Environmental Microbiology, vol. 75, no. 13, pp. 4264–4272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Gu, R. M. Siletzky, S. Wright, M. Islam, and S. Kathariou, “Antimicrobial susceptibility profiles and strain type diversity of Campylobacter jejuni isolates from turkeys in eastern North Carolina,” Applied and Environmental Microbiology, vol. 75, no. 2, pp. 474–482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. C. B. D'Lima, W. G. Miller, R. E. Mandrell et al., “Clonal population structure and specific genotypes of multidrug-resistant Campylobacter coli from Turkeys,” Applied and Environmental Microbiology, vol. 73, no. 7, pp. 2156–2164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Engberg, J. Neimann, E. M. Nielsen, F. M. Aarestrup, and V. Fussing, “Quinolone-resistant Campylobacter infections in Denmark: risk factors and clinical consequences,” Emerging Infectious Diseases, vol. 10, no. 6, pp. 1056–1063, 2004. View at Scopus
  55. J. Y. M. Johnson, L. M. McMullen, P. Hasselback, M. Louie, G. Jhangri, and L. D. Saunders, “Risk factors for ciprofloxacin resistance in reported Campylobacter infections in southern Alberta,” Epidemiology and Infection, vol. 136, no. 7, pp. 903–912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. R. Evans, G. Northey, T. S. Sarvotham, A. L. Hopkins, C. J. Rigby, and D. R. Thomas, “Risk factors for ciprofloxacin-resistant Campylobacter infection in Wales,” Journal of Antimicrobial Chemotherapy, vol. 64, no. 2, pp. 424–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Kittl, P. Kuhnert, H. Hächler, and B. M. Korczak, “Comparison of genotypes and antibiotic resistance of Campylobacter jejuni isolated from humans and slaughtered chickens in Switzerland,” Journal of Applied Microbiology, vol. 110, no. 2, pp. 513–520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. R. C. Ganchingco, K. Kumar, D. M. Stone et al., “Campylobacter coli and C. jejuni isolated from farmed pigs in Grenada, West Indies and their antimicrobial resistance patterns,” Journal of Animal Research, vol. 2, no. 3, pp. 237–245, 2012.
  59. K. A. Jolley, M.-S. Chan, and M. C. J. Maiden, “mlstdbNet—distributed multi-locus sequence typing (MLST) databases,” BMC Bioinformatics, vol. 5, article 86, 2004.