About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 795458, 13 pages
http://dx.doi.org/10.1155/2013/795458
Research Article

Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

1Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia
2Craniofacial Laboratory, School of Dental Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia

Received 4 July 2013; Revised 12 September 2013; Accepted 29 September 2013

Academic Editor: Esmaiel Jabbari

Copyright © 2013 Abu Bakar Mohd Hilmi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%), longest epithelial tongue (1.62 ± 0.13 mm), and shortest migratory tongue distance (7.11 ± 0.25 mm). The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm) and chitosan skin substitute (0.16 ± 0.05 cm) were significantly decreased ( ) compared with duoderm (0.45 ± 0.11 cm). Human leukocyte antigen (HLA) expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.