About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 796014, 7 pages
http://dx.doi.org/10.1155/2013/796014
Research Article

Increased Toll-Like Receptor Signaling Pathways Characterize CD8+ Cells in Rapidly Progressive SIV Infection

1Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
2Department of Pathology, UCSD School of Medicine, AIDS Research Center, La Jolla, CA 92037, USA
3Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA

Received 18 May 2012; Accepted 9 November 2012

Academic Editor: Zhengguo Xiao

Copyright © 2013 Maria Cecilia Garibaldi Marcondes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. S. Roberts, M. A. Zandonatti, D. D. Watry et al., “Induction of pathogenic sets of genes in macrophages and neurons in neuroAIDS,” American Journal of Pathology, vol. 162, no. 6, pp. 2041–2057, 2003. View at Scopus
  2. L. J. Madden, M. A. Zandonatti, C. T. Flynn et al., “CD8+ cell depletion amplifies the acute retroviral syndrome,” Journal of NeuroVirology, vol. 10, no. 1, pp. 58–66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Bissel, G. Wang, A. M. Trichel, M. Murphey-Corb, and C. A. Wiley, “Longitudinal analysis of monocyte/macrophage infection in simian immunodeficiency virus-infected, CD8+ T-cell-depleted macaques that develop lentiviral encephalitis,” American Journal of Pathology, vol. 168, no. 5, pp. 1553–1569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. V. Westmoreland, E. Halpern, and A. A. Lackner, “Simian immunodeficiency virus encephalitis in rhesus macaques is associated with rapid disease progression,” Journal of NeuroVirology, vol. 4, no. 3, pp. 260–268, 1998. View at Scopus
  5. S. M. Smith, B. Holland, C. Russo, P. J. Dailey, P. A. Marx, and R. I. Connor, “Retrospective analysis of viral load and SIV antibody responses in rhesus macaques infected with pathogenic SIV: predictive value for disease progression,” AIDS Research and Human Retroviruses, vol. 15, no. 18, pp. 1691–1701, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. S. I. Staprans, P. J. Dailey, A. Rosenthal et al., “Simian immunodeficiency virus disease course is predicted by the extent of virus replication during primary infection,” Journal of Virology, vol. 73, no. 6, pp. 4829–4839, 1999. View at Scopus
  7. M. Dykhuizen, J. L. Mitchen, D. C. Montefiori et al., “Determinants of disease in the simian immunodeficiency virus-infected rhesus macaque: characterizing animals with low antibody responses and rapid progression,” Journal of General Virology, vol. 79, part 10, pp. 2461–2467, 1998. View at Scopus
  8. L. J. Picker, S. I. Hagen, R. Lum et al., “Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection,” Journal of Experimental Medicine, vol. 200, no. 10, pp. 1299–1314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Okoye, M. Meier-Schellersheim, J. M. Brenchley et al., “Progressive CD4+ central-memory T cell decline results in CD4+ effector-memory insufficiency and overt disease in chronic SIV infection,” Journal of Experimental Medicine, vol. 204, no. 9, pp. 2171–2185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. G. Marcondes, S. Sopper, U. Sauermann et al., “CD4 deficits and disease course acceleration can be driven by a collapse of the CD8 response in rhesus macaques infected with simian immunodeficiency virus,” AIDS, vol. 22, no. 12, pp. 1441–1452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. T. Evans, D. H. O'Connor, P. Jing et al., “Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef,” Nature Medicine, vol. 5, no. 11, pp. 1270–1276, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. V. M. Hirsch, S. Santra, S. Goldstein et al., “Immune failure in the absence of profound CD4+ T-lymphocyte depletion in simian immunodeficiency virus-infected rapid progressor macaques,” Journal of Virology, vol. 78, no. 1, pp. 275–284, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. T. Evans, P. Jing, T. M. Allen et al., “Definition of five new simian immunodeficiency virus cytotoxic t-lymphocyte epitopes and their restricting major histocompatibility complex class I molecules: evidence for an influence on disease progression,” Journal of Virology, vol. 74, no. 16, pp. 7400–7410, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Koup, J. T. Safrit, Y. Cao et al., “Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome,” Journal of Virology, vol. 68, no. 7, pp. 4650–4655, 1994. View at Scopus
  15. C. M. Hay, D. J. Ruhl, N. O. Basgoz et al., “Lack of viral escape and defective in vivo activation of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes in rapidly progressive infection,” Journal of Virology, vol. 73, no. 7, pp. 5509–5519, 1999. View at Scopus
  16. S. A. Islam, C. M. Hay, K. E. Hartman et al., “Persistence of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte clones in a subject with rapid disease progression,” Journal of Virology, vol. 75, no. 10, pp. 4907–4911, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. G. Marcondes, T. H. Burdo, S. Sopper et al., “Enrichment and persistence of virus-specific CTL in the brain of simian immunodeficiency virus-infected monkeys is associated with a unique cytokine environment,” Journal of Immunology, vol. 178, no. 9, pp. 5812–5819, 2007. View at Scopus
  18. M. C. G. Marcondes, C. M. S. Lanigan, T. H. Burdo, D. D. Watry, and H. S. Fox, “Increased expression of monocyte CD44v6 correlates with the development of encephalitis in rhesus macaques infected with simian immunodeficiency virus,” Journal of Infectious Diseases, vol. 197, no. 11, pp. 1567–1576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. G. Marcondes, E. M. E. Burudi, S. Huitron-Resendiz et al., “Highly activated CD8+ T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection,” Journal of Immunology, vol. 167, no. 9, pp. 5429–5438, 2001. View at Scopus
  20. A. Sakhdari, S. Mujib, B. Vali et al., “Tim-3 negatively regulates cytotoxicity in exhausted CD8 + T cells in HIV infection,” PLoS One, vol. 7, no. 7, Article ID 40146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Funderburg, A. A. Luciano, W. Jiang, B. Rodriguez, S. F. Sieg, and M. M. Lederman, “Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis,” PLoS One, vol. 3, no. 4, Article ID e1915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. O. Aliprantis, R. B. Yang, D. S. Weiss, P. Godowski, and A. Zychlinsky, “The apoptotic signaling pathway activated by Toll-like receptor-2,” EMBO Journal, vol. 19, no. 13, pp. 3325–3336, 2000. View at Scopus
  23. M. Raisova, A. M. Hossini, J. Eberle et al., “The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis,” Journal of Investigative Dermatology, vol. 117, no. 2, pp. 333–340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Meier, G. Alter, N. Frahm et al., “MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded toll-like receptor ligands,” Journal of Virology, vol. 81, no. 15, pp. 8180–8191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Mancuso, M. Gambuzza, A. Midiri et al., “Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells,” Nature Immunology, vol. 10, no. 6, pp. 587–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. S. Beignon, K. McKenna, M. Skoberne et al., “Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions,” Journal of Clinical Investigation, vol. 115, no. 11, pp. 3265–3275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. L. Ahonen, C. L. Doxsee, S. M. McGurran et al., “Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN,” Journal of Experimental Medicine, vol. 199, no. 6, pp. 775–784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Brichacek, C. Vanpouille, Y. Kiselyeva et al., “Contrasting roles for TLR ligands in HIV-1 pathogenesis,” PLoS One, vol. 5, no. 9, Article ID e12831, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. U. Hasan, C. Chaffois, C. Gaillard et al., “Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88,” Journal of Immunology, vol. 174, no. 5, pp. 2942–2950, 2005. View at Scopus
  30. A. A. C. Lemckert, J. Goudsmit, and D. H. Barouch, “Challenges in the search for an HIV vaccine,” European Journal of Epidemiology, vol. 19, no. 6, pp. 513–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Tritel, A. M. Stoddard, B. J. Flynn et al., “Prime-boost vaccination with HIV-1 gag protein and cytosine phosphate guanosine oligodeoxynucleotide, followed by adenovirus, induces sustained and robust humoral and cellular immune responses,” Journal of Immunology, vol. 171, no. 5, pp. 2538–2547, 2003. View at Scopus
  32. U. Wille-Reece, B. J. Flynn, K. Loré et al., “HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 42, pp. 15190–15194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. U. Wille-Reece, B. J. Flynn, K. Loré et al., “Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1249–1258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Baenziger, M. Heikenwalder, P. Johansen et al., “Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIV-mediated pathology,” Blood, vol. 113, no. 2, pp. 377–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. N. Mandl, A. P. Barry, T. H. Vanderford et al., “Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections,” Nature Medicine, vol. 14, no. 10, pp. 1077–1087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Y. Oh, K. Baumann, O. Hamouda et al., “A frequent functional toll-like receptor 7 polymorphism is associated with accelerated HIV-1 disease progression,” AIDS, vol. 23, no. 3, pp. 297–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Chung, S. B. Amrute, K. Abel et al., “Characterization of virus-responsive plasmacytoid dendritic cells in the rhesus macaque,” Clinical and Diagnostic Laboratory Immunology, vol. 12, no. 3, pp. 426–435, 2005. View at Publisher · View at Google Scholar · View at Scopus