About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 798054, 6 pages
http://dx.doi.org/10.1155/2013/798054
Research Article

The use of Multidimensional Data to Identify the Molecular Biomarker for Pancreatic Ductal Adenocarcinoma

1State Key Laboratory of Robotics and System, Bio-X Centre, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
2Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China

Received 28 June 2013; Accepted 23 August 2013

Academic Editor: Romonia Renee Reams

Copyright © 2013 Liwei Zhuang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA: A Cancer Journal for Clinicians, vol. 63, no. 1, pp. 11–30, 2013.
  2. A. Stathis and M. J. Moore, “Advanced pancreatic carcinoma: current treatment and future challenges,” Nature Reviews Clinical Oncology, vol. 7, no. 3, pp. 163–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Giovinazzo, G. Turri, S. Zanini, G. Butturini, A. Scarpa, and C. Bassi, “Clinical implications of biological markers in pancreatic ductal adenocarcinoma,” Surgical Oncology, vol. 21, no. 4, pp. e171–e182, 2012. View at Publisher · View at Google Scholar
  4. S. Kaur, M. J. Baine, M. Jain, A. R. Sasson, and S. K. Batra, “Early diagnosis of pancreatic cancer: challenges and new developments,” Biomarkers in Medicine, vol. 6, no. 5, pp. 597–612, 2012. View at Publisher · View at Google Scholar
  5. R. Grützmann, H. Boriss, O. Ammerpohl et al., “Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes,” Oncogene, vol. 24, no. 32, pp. 5079–5088, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Hidalgo and D. D. von Hoff, “Translational therapeutic opportunities in ductal adenocarcinoma of the pancreas,” Clinical Cancer Research, vol. 18, no. 16, pp. 4249–4256, 2012. View at Publisher · View at Google Scholar
  7. J. K. Stratford, D. J. Bentrem, J. M. Anderson et al., “A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma,” PLoS Medicine, vol. 7, no. 7, Article ID e1000307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Gama-Castro, V. Jiménez-Jacinto, M. Peralta-Gil et al., “RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation,” Nucleic Acids Research, vol. 36, no. 1, pp. D120–D124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Sethupathy, M. Megraw, and A. G. Hatzigeorgiou, “A guide through present computational approaches for the identification of mammalian microRNA targets,” Nature Methods, vol. 3, no. 11, pp. 881–886, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, “KEGG for integration and interpretation of large-scale molecular data sets,” Nucleic Acids Research, vol. 40, no. D1, pp. D109–D114, 2012. View at Publisher · View at Google Scholar
  11. F. Qi, Y. Inagaki, B. Gao et al., “Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas- and mitochondria-mediated pathways,” Cancer Science, vol. 102, no. 5, pp. 951–958, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. W. Saif, S. Hashmi, D. Bell, and R. B. Diasio, “Prognostication of pancreatic adenocarcinoma by expression of thymidine phosphorylase/dihydropyrimidine dehydrogenase ratio and its correlation with survival,” Expert Opinion on Drug Safety, vol. 8, no. 5, pp. 507–514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Vo, B. Amarasinghe, K. Washington, A. Gonzalez, J. Berlin, and T. P. Dang, “Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation,” Molecular Cancer, vol. 10, article 138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Morton, P. Timpson, S. A. Karim et al., “Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 246–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. F. Grochola, H. Taubert, T. Greither, U. Bhanot, A. Udelnow, and P. Würl, “Elevated transcript levels from the MDM2 P1 promoter and low p53 transcript levels are associated with poor prognosis in human pancreatic ductal adenocarcinoma,” Pancreas, vol. 40, no. 2, pp. 265–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Reichert, D. Saur, R. Hamacher, R. M. Schmid, and G. Schneider, “Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells,” Cancer Research, vol. 67, no. 9, pp. 4149–4156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Schild, M. Wirth, M. Reichert, R. M. Schmid, D. Saur, and G. Schneider, “PI3K signaling maintains c-myc expression to regulate transcription of E2F1 in pancreatic cancer cells,” Molecular Carcinogenesis, vol. 48, no. 12, pp. 1149–1158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Li, X. Gu, Y. Fang, J. Xiang, and Z. Chen, “microRNA expression profiles in human colorectal cancers with brain metastases,” Oncology Letters, vol. 3, no. 2, pp. 346–350, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Xing, S. Wan, F. Zhou et al., “Genetic polymorphisms in pre-microRNA genes as prognostic markers of colorectal cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 21, no. 1, pp. 217–227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Asher and U. Schibler, “Crosstalk between components of circadian and metabolic cycles in mammals,” Cell Metabolism, vol. 13, no. 2, pp. 125–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Bass and J. S. Takahashi, “Circadian integration of metabolism and energetics,” Science, vol. 330, no. 6009, pp. 1349–1354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Oda, Y. Katayose, S. Yabuuchi et al., “Clock gene mouse period2 overexpression inhibits growth of human pancreatic cancer cells and has synergistic effect with cisplatin,” Anticancer Research, vol. 29, no. 4, pp. 1201–1210, 2009. View at Scopus
  23. R. F. Morrison and S. R. Farmer, “Hormonal signaling and transcriptional control of adipocyte differentiation,” Journal of Nutrition, vol. 130, no. 12, pp. 3116S–3121S, 2000. View at Scopus
  24. F. Krempler, D. Breban, H. Oberkofler et al., “Leptin, peroxisome proliferator-activated receptor-γ, and CCAAT/enhancer binding protein-α mRNA expression in adipose tissue of humans and their relation to cardiovascular risk factors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 2, pp. 443–449, 2000. View at Scopus
  25. T. Kumagai, T. Akagi, J. C. Desmond, et al., “Epigenetic regulation and molecular characterization of C/EBPalpha in pancreatic cancer cells,” International Journal of Cancer, vol. 124, no. 4, pp. 827–833, 2009. View at Publisher · View at Google Scholar
  26. N. H. Thoennissen, G. B. Thoennissen, S. Abbassi, et al., “Transcription factor CCAAT/enhancer-binding protein alpha and critical circadian clock downstream target gene PER2 are highly deregulated in diffuse large B-cell lymphoma,” Leukemia & Lymphoma, vol. 53, no. 8, pp. 1577–1585, 2012. View at Publisher · View at Google Scholar
  27. W. Wu, J. Yang, X. Feng, et al., “MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells,” Molecular Cancer, vol. 12, article 30, 2013.
  28. D. Chu, W. Kohlmann, and D. G. Adler, “Identification and screening of individuals at increased risk for pancreatic cancer with emphasis on known environmental and genetic factors and hereditary syndromes,” Journal of the Pancreas, vol. 11, no. 3, pp. 203–212, 2010. View at Scopus
  29. M. Falasca, F. Selvaggi, R. Buus, S. Sulpizio, and C. E. Edling, “Targeting phosphoinositide 3-kinase pathways in pancreatic cancer—from molecular signalling to clinical trials,” Anti-Cancer Agents in Medicinal Chemistry, vol. 11, no. 5, pp. 455–463, 2011. View at Scopus
  30. C. Sun, A. H. Rosendahl, R. Andersson, D. Wu, and X. Wang, “The role of phosphatidylinositol 3-kinase signaling pathways in pancreatic cancer,” Pancreatology, vol. 11, no. 2, pp. 252–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Lauth and R. Toftgård, “Hedgehog signaling and pancreatic tumor development,” Advances in Cancer Research, vol. 110, pp. 1–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. P. Morris, S. C. Wang, and M. Hebrok, “KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma,” Nature Reviews Cancer, vol. 10, no. 10, pp. 683–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Guillaumond, J. Leca, O. Olivares, et al., “Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 10, pp. 3919–3924, 2013. View at Publisher · View at Google Scholar
  34. H. Ying, A. C. Kimmelman, C. A. Lyssiotis et al., “Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism,” Cell, vol. 149, no. 3, pp. 656–670, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Bosetti, V. Rosato, D. Buniato, et al., “Cancer risk for patients using thiazolidinediones for type 2 diabetes: a meta-analysis,” Oncologist, vol. 18, no. 2, pp. 148–156, 2013.
  36. I. N. Colmers, S. L. Bowker, L. A. Tjosvold, and J. A. Johnson, “Insulin use and cancer risk in patients with type 2 diabetes: a systematic review and meta-analysis of observational studies,” Diabetes & Metabolism, vol. 38, no. 6, pp. 485–506, 2012. View at Publisher · View at Google Scholar