About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 801769, 11 pages
http://dx.doi.org/10.1155/2013/801769
Research Article

Optimization Studies on Compression Coated Floating-Pulsatile Drug Delivery of Bisoprolol

Department of Pharmaceutics, MAEER’s Maharashtra Institute of Pharmacy, MIT Campus, Survey No. 124, Kothrud, Pune, Maharashtra 411 038, India

Received 5 April 2013; Revised 19 August 2013; Accepted 24 September 2013

Academic Editor: Sandeep Nema

Copyright © 2013 Swati C. Jagdale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Shargel, S. Wu-Pong, and A. Yu, Applied Biopharmaceutics and Pharmacokinetics, McGraw-Hill, New York, NY, USA, 5th edition, 2005.
  2. L. V. Allen, N. G. Popovich, and H. C. Ansel, Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 9th edition, 2010.
  3. G. Labrecque and P. M. Bélanger, “Biological rhythms in the absorption, distribution, metabolism and excretion of drugs,” Pharmacology and Therapeutics, vol. 52, no. 1, pp. 95–107, 1991. View at Scopus
  4. W. C. Duncan Jr., “Circadian rhythms and the pharmacology of affective illness,” Pharmacology and Therapeutics, vol. 71, no. 3, pp. 253–312, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. A. E. Reinberg, “Concepts of circadian chronopharmacology,” Annals of the New York Academy of Sciences, vol. 618, pp. 102–115, 1991. View at Scopus
  6. M. H. Smolensky and G. E. D'Alonzo, “Medical chronobiology: concepts and applications,” American Review of Respiratory Disease, vol. 147, no. 6, pp. S2–S19, 1993. View at Scopus
  7. B. Lemmer, “Chronopharmacology: time, a key in drug treatment,” Annales de Biologie Clinique, vol. 52, no. 1, pp. 1–7, 1994. View at Scopus
  8. M. H. Smolensky and N. A. Peppas, “Chronobiology, drug delivery, and chronotherapeutics,” Advanced Drug Delivery Reviews, vol. 59, no. 9-10, pp. 828–851, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. Smolensky and G. Labrecque, “Chronoterapeutics,” Pharma News, vol. 4, no. 2, pp. 10–16, 1997.
  10. S. Ohdo, “Chronopharmaceutics: pharmaceutics focused on biological rhythm,” Biological and Pharmaceutical Bulletin, vol. 33, no. 2, pp. 159–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Ravi, Y. Reddy, A. Nageswara, D. Dhachinamoorthi, and K. Chandra, “An art of dosage form designing,” Chronotherapeutics, vol. 3, pp. 1690–1696, 2010.
  12. N. Saigal, S. Baboota, A. Ahuja, and J. Ali, “Site specific chronotherapeutic drug delivery systems: a patent review,” Recent Patents on Drug Delivery and Formulation, vol. 3, no. 1, pp. 64–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S.-Y. Lin and Y. Kawashima, “Current status and approaches to developing press-coated chronodelivery drug systems,” Journal of Controlled Release, vol. 157, no. 3, pp. 331–353, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Dalvadi and J. K. Patel, “Chronpharmaceutics, pulsatile drug delivery system as current trend,” Asian Journal of Pharmaceutical Sciences, vol. 5, no. 5, pp. 204–230, 2010. View at Scopus
  15. A. Maroni, L. Zema, M. D. D. Curto, G. Loreti, and A. Gazzaniga, “Oral pulsatile delivery: rationale and chronopharmaceutical formulations,” International Journal of Pharmaceutics, vol. 398, no. 1-2, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Sharma, M. Srikanth, M. Uhumwangho, and P.K. Kumar, “Recent trends in pulsatile drug delivery systems—a review,” International Journal of Drug Delivery, vol. 2, pp. 200–212, 2010.
  17. V. Belgamwar, M. Gaikwad, G. Patil, and S. Surana, “Pulsatile drug delivery system,” Asian Journal of Pharmaceutics, vol. 2, pp. 141–145, 2008.
  18. P. Dinakar, C. Varalakshmi , P. Reddy, and S. Mohanlakshmi, “Formulation and evaluation of Bisoprolol fumarate fumarate transdermal patches,” Journal of Pharmacy Research, vol. 3, no. 1, pp. 1955–1957, 2010.
  19. P. Shailesh and P. Laxmanbhai, “Floating matrix tablets of domperidone: formulation and optimization using simplex lattice design,” Thai Journal of Pharmaceutical Sciences, vol. 33, no. 4, pp. 113–122, 2009. View at Scopus
  20. M. Dimitrov and N. Lambov, “Study of Verapamil hydrochloride release from compressed hydrophilic Polyox-Wsr tablets,” International Journal of Pharmaceutics, vol. 189, no. 1, pp. 105–111, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. S.-J. Jin, Y.-H. Yoo, M.-S. Kim, J.-S. Kim, J.-S. Park, and S.-J. Hwang, “Paroxetine hydrochloride controlled release POLYOX matrix tablets: screening of formulation variables using Plackett-Burman screening design,” Archives of Pharmacal Research, vol. 31, no. 3, pp. 399–405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. L. C. Sasidhar and S. Vidyadhara, “Development of diltiazem hydrochloride controlled release matrix tablets using poly(ethyleneoxides),” Pharma Review, vol. 2007, pp. 112–123, 2007.
  23. B. U. Janugade, S. S. Patil, S. V. Patil, and P. D. Lade, “Formulation and evaluation of press-coated montelukast sodium tablets for pulsatile drug delivery system,” International Journal of ChemTech Research, vol. 1, no. 3, pp. 690–691, 2009. View at Scopus
  24. M. Ghimire, F. J. McInnes, D. G. Watson, A. B. Mullen, and H. N. E. Stevens, “In-vitro/in-vivo correlation of pulsatile drug release from press-coated tablet formulations: a pharmacoscintigraphic study in the beagle dog,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, no. 2, pp. 515–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Fukui, N. Miyamura, T. Yoneyama, and M. Kobayashi, “Drug release from and mechanical properties of press-coated tablets with hydroxypropylmethylcellulose acetate succinate and plasticizers in the outer shell,” International Journal of Pharmaceutics, vol. 217, no. 1-2, pp. 33–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Sungthongjeen, P. Sriamornsak, and S. Puttipipatkhachorn, “Design and evaluation of floating multi-layer coated tablets based on gas formation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 1, pp. 255–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. B. S. Dave, A. F. Amin, and M. M. Patel, “Gastroretentive drug delivery system of ranitidine hydrochloride: formulation and in vitro evaluation,” AAPS PharmSciTech, vol. 5, no. 2, pp. 77–82, 2004.
  28. S. Shishu, N. Gupta, and N. Aggarwal, “Gastroretentive floating delivery system for 5-fluorouracil,” Asian Journal of Pharmaceutical Sciences, vol. 2, no. 4, pp. 143–149, 2007. View at Scopus
  29. P. Roy and A. Shahiwala, “Statistical optimization of ranitidine HCl floating pulsatile delivery system for chronotherapy of nocturnal acid breakthrough,” European Journal of Pharmaceutical Sciences, vol. 37, no. 3-4, pp. 363–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. N. Gambhire, K. W. Ambade, S. D. Kurmi, V. J. Kadam, and K. R. Jadhav, “Development and in vitro evaluation of an oral floating matrix tablet formulation of diltiazem hydrochloride,” AAPS PharmSciTech, vol. 8, no. 3, pp. E166–E174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Ba and I. H. Boyaci, “Modeling and optimization i: usability of response surface methodology,” Journal of Food Engineering, vol. 78, no. 3, pp. 836–845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Yamamoto, Y. Fujii, Y. Hyodo, and H. Yumiba, “New light on fractional 2m factorial designs,” Journal of Statistical Planning and Inference, vol. 56, no. 2, pp. 269–287, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Aoki and A. Takemura, “Some characterizations of affinely full-dimensional factorial designs,” Journal of Statistical Planning and Inference, vol. 139, no. 10, pp. 3525–3532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. J. Martin, G. Jones, and J. A. Eccleston, “Some results on two-level factorial designs with dependent observations,” Journal of Statistical Planning and Inference, vol. 66, no. 2, pp. 363–384, 1998. View at Scopus
  35. S. L. C. Ferreira, R. E. Bruns, E. G. P. da Silva et al., “Statistical designs and response surface techniques for the optimization of chromatographic systems,” Journal of Chromatography A, vol. 1158, no. 1-2, pp. 2–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. B. N. Singh and K. H. Kim, “Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention,” Journal of Controlled Release, vol. 63, no. 3, pp. 235–259, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Arora, J. Ali, A. Ahuja, R. K. Khar, and S. Baboota, “Floating drug delivery systems: a review,” AAPS PharmSciTech, vol. 6, no. 3, article 47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Baumgartner, J. Kristl, F. Vrečer, P. Vodopivec, and B. Zorko, “Optimisation of floating matrix tablets and evaluation of their gastric residence time,” International Journal of Pharmaceutics, vol. 195, no. 1-2, pp. 125–135, 2000. View at Publisher · View at Google Scholar · View at Scopus