About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 801962, 10 pages
http://dx.doi.org/10.1155/2013/801962
Review Article

Carotid Artery Segmentation in Ultrasound Images and Measurement of Intima-Media Thickness

Department of Electronics and Instrumentation Engineering, Shri Govindram Seksaria Institute of Technology and Science, Indore 23, Park Road, Indore 452003, India

Received 17 April 2013; Accepted 28 May 2013

Academic Editor: Manuel F. Casanova

Copyright © 2013 Vaishali Naik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, “Cardiovascular Disease,” http://www.who.int/cardiovascular_diseases/en/.
  2. L.-N. Pu, Z. Zhao, and Y.-T. Zhang, “Investigation on cardiovascular risk prediction using genetic information,” IEEE Information Technology in Biomedicine, vol. 16, pp. 795–808, 2012.
  3. P. Touboul, A. Elbaz, C. Koller et al., “Common carotid artery intima-media thickness and brain infarction: the etude du profil genetique de l'infarctus cerebral (GENIC) case-control study,” Circulation, vol. 102, no. 3, pp. 313–318, 2000. View at Scopus
  4. S. Delsanto, F. Molinari, P. Giustetto, W. Liboni, S. Badalamenti, and J. S. Suri, “Characterization of a completely user-independent algorithm for carotid artery segmentation in 2-D ultrasound images,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 4, pp. 1265–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Santhiyakumari and M. Madheswaran, “Extraction of intima- media layer of arteria-carotis and evaluation of its thickness using active contour approach,” in Proceedings of the International Conference on Intelligent and Advanced Systems (ICIAS '07), pp. 582–586, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Delsanto, F. Molinari, P. Giustetto, W. Liboni, and S. Badalamenti, “CULEX-completely user-independent layers EXtraction: ultrasonic carotid artery images segmentation,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS '05), pp. 6468–6471, September 2005. View at Scopus
  7. C. Liguori, A. Paolillo, and A. Pietrosanto, “An automatic measurement system for the evaluation of carotid intima-media thickness,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 6, pp. 1684–1691, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Halenka, “Noninvasive measurement of early atherosclerosis by high-resolution B-mode ultrasonography,” Acta Universitatis Palackianae Olomucensis Facultatis Medicae, vol. 142, pp. 7–11, 1999. View at Scopus
  9. P.-J. Touboul, M. G. Hennerici, S. Meairs et al., “Mannheim carotid intima-media thickness consensus (2004–2006),” Cerebrovascular Diseases, vol. 23, no. 1, pp. 75–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Faita, V. Gemignani, E. Bianehini, C. Giannarelli, and M. Demi, “Real-time measurement system for the evaluation of the Intima Media Thickness with a new edge detector,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp. 715–718, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. P. Loizou, C. S. Pattichis, A. N. Nicolaides, and M. Pantziaris, “Manual and automated media and intima thickness measurements of the common carotid artery,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 5, pp. 983–994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. I. M. Van Der Meer, M. L. Bots, A. Hofman, A. I. Del Sol, D. A. M. Van Der Kuip, and J. C. M. Witteman, “Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: The Rotterdam Study,” Circulation, vol. 109, no. 9, pp. 1089–1094, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Järvisalo, A. Putto-Laurila, L. Jartti et al., “Carotid artery intima-media thickness in children with type 1 diabetes,” Diabetes, vol. 51, no. 2, pp. 493–498, 2002. View at Scopus
  14. D. H. O'Leary, J. F. Polak, R. A. Kronmal, T. A. Manolio, G. L. Burke, and S. K. Wolfson Jr., “Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults,” The New England Journal of Medicine, vol. 340, no. 1, pp. 14–22, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-C. Huang, T. Chen, T.-H. Chao, and Y.-F. Juan, “The investigation of the relationship between carotid intima-media thickness and vascular compliance in patients with coronary artery disease,” Biomedical Engineering, vol. 16, no. 1, pp. 37–42, 2004. View at Scopus
  16. M. W. Lorenz, H. S. Markus, M. L. Bots, M. Rosvall, and M. Sitzer, “Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis,” Circulation, vol. 115, no. 4, pp. 459–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. N. Hodis, W. J. Mack, L. LaBree et al., “The role of carotid arterial intima—media thickness in predicting clinical coronary events,” Annals of Internal Medicine, vol. 128, no. 4, pp. 262–269, 1998. View at Scopus
  18. J. Fang, J. P. Zhang, C. X. Luo, X. M. Yu, and L. Q. Lv, “Carotid intima-media thickness in childhood and adolescent obesity relations to abdominal obesity, high triglyceride level and insulin resistance,” International Journal of Medical Sciences, vol. 7, no. 5, pp. 278–283, 2010. View at Scopus
  19. D.-C. Cheng, X. Jiang, A. Schmidt-Trucksäss, and K. Cheng, “Automatic intima-media thickness measurement of carotid artery wall in B-mode sonographic images,” in Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: from Nano to Macro, pp. 912–915, April 2006. View at Scopus
  20. D. E. Ilea, C. Duffy, L. Kavanagh, A. Stanton, and P. F. Whelan, “Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 60, pp. 158–177, 2013.
  21. X. Xu, Y. Zhou, X. Cheng, E. Song, and G. Li, “Ultrasound intima-media segmentation using Hough transform and dual snake model,” Computerized Medical Imaging and Graphics, vol. 36, no. 3, pp. 248–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Molinari, C. S. Pattichis, G. Zeng et al., “Completely automated multiresolution edge snapper—a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database,” IEEE Transactions on Image Processing, vol. 21, no. 3, pp. 1211–1222, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Destrempes, J. Meunier, M. Giroux, G. Soulez, and G. Cloutier, “Segmentation of plaques in sequences of ultrasonic B-mode images of carotid arteries based on motion estimation and a bayesian model,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 8, pp. 2202–2211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Petroudi, C. Loizou, M. Pantziaris, M. Pattichis, and C. Pattichis, “A fully automated method using active contours for the evaluation of the intima-media thickness in carotid US images,” in Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '11), pp. 8053–8057, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Destrempes, J. Meunier, M. Giroux, G. Soulez, and G. Cloutier, “Segmentation in ultrasonic B-mode images of healthy carotid arteries using mixtures of Nakagami distributions and stochastic optimization,” IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 215–229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Faita, V. Gemignani, E. Bianchini, C. Giannarelli, L. Ghiadoni, and M. Demi, “Real-time measurement system for evaluation of the carotid intima-media thickness with a robust edge operator,” Journal of Ultrasound in Medicine, vol. 27, no. 9, pp. 1353–1361, 2008. View at Scopus
  27. Q. Liang, I. Wendelhag, J. Wikstrand, and T. Gustavsson, “A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images,” IEEE Transactions on Medical Imaging, vol. 19, no. 2, pp. 127–142, 2000. View at Scopus
  28. T. Gustavsson, Q. Liang, I. Wendelhag, and J. Wikstrand, “A dynamic programming procedure for automated ultrasonic measurement of the carotid artery,” in Proceedings of the IEEE Computers in Cardiology Conference, pp. 297–300, 1994.
  29. J. A. Noble and D. Boukerroui, “Ultrasound image segmentation: a survey,” IEEE Transactions on Medical Imaging, vol. 25, no. 8, pp. 987–1010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Molinari, G. Zeng, and J. S. Suri, “A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound,” Computer Methods and Programs in Biomedicine, vol. 100, no. 3, pp. 201–221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. P. Loizou, C. S. Pattichis, M. Pantziaris, T. Tyllis, and A. Nicolaides, “Snakes based segmentation of the common carotid artery intima media,” Medical and Biological Engineering and Computing, vol. 45, no. 1, pp. 35–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Golemati, J. Stoitsis, T. Balkizas, and K. S. Nikita, “Comparison of B-mode, M-mode and Hough transform methods for measurement of arterial diastolic and systolic diameters,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS '05), pp. 1758–1761, September 2005. View at Scopus
  33. F. Molinari, G. Zeng, and J. S. Suri, “An integrated approach to computer-based automated tracing and its validation for 200 common carotid arterial wall ultrasound images: a new technique,” Journal of Ultrasound in Medicine, vol. 29, no. 3, pp. 399–418, 2010. View at Scopus
  34. T. Gustavsson, R. Abu-Gharbieh, G. Hamarneh, and Q. Liang, “Implementation and comparison of four different boundary detection algorithms for quantitative ultrasonic measurements of the human carotid artery,” in Proceedings of the 24th Annual Meeting on Computers in Cardiology, pp. 69–72, September 1997. View at Scopus
  35. G. Liu, B. Wang, and D. C. Liu, “Detection of intima-media layer of common carotid artery with dynamic programming based active contour model,” in Proceedings of the Chinese Conference on Pattern Recognition (CCPR '08), pp. 1–6, October 2008.
  36. P. Holdfeldt, M. Viberg, and T. Gustavsson, “A new method based on dynamic programming for boundary detection in ultrasound image sequences,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Conference, vol. 2008, pp. 3072–3074, 2008. View at Scopus
  37. D.-C. Cheng and X. Jiang, “Detections of arterial wall in sonographic artery images using dual dynamic programming,” IEEE Transactions on Information Technology in Biomedicine, vol. 12, no. 6, pp. 792–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. K. Jain, Fundamentals of Digital Image Processing, PHI.
  39. S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound in Medicine and Biology, vol. 33, no. 12, pp. 1918–1932, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Stoitsis, S. Golemati, S. Kendros, and K. S. Nikita, “Automated detection of the carotid artery wall in B-mode ultrasound images using active contours initialized by the Hough Transform,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2008, pp. 3146–3149, 2008. View at Scopus
  41. S. Petroudi, C. P. Loizou, and C. S. Pattichis, “Atherosclerotic carotid wall segmentation in ultrasound images using Markov random fields,” in Proceedings of the 10th International Conference on Information Technology and Applications in Biomedicine (ITAB '10), pp. 1–5, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. I. Matsakou, S. Golemati, J. S. Stoitsis, and K. S. Nikita, “Automated detection of the carotid artery wall in longitudinal B-mode images using active contours initialized by the Hough transform,” in Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '11), pp. 571–574, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Destrempes, G. Soulez, M. Giroux, J. Meunier, and G. Cloutier, “Segmentation of plaques in sequences of ultrasonic B-mode images of carotid arteries based on motion estimation and Nakagami distributions,” in Proceedings of the IEEE International Ultrasonics Symposium (IUS '09), pp. 2480–2483, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Lobregt and M. A. Viergever, “Discrete dynamic contour model,” IEEE Transactions on Medical Imaging, vol. 14, no. 1, pp. 12–24, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, Cambridge University, 1999.
  47. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 1997. View at Scopus
  48. C. Li, C. Kao, J. C. Gore, and Z. Ding, “Minimization of region-scalable fitting energy for image segmentation,” IEEE Transactions on Image Processing, vol. 17, no. 10, pp. 1940–1949, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. C. Zhu, “Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 884–900, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Cremers, F. Tischhäuser, J. Weickert, and C. Schnörr, “Diffusion snakes: Introducing statistical shape knowledge into the Mumford-Shah functional,” International Journal of Computer Vision, vol. 50, no. 3, pp. 295–313, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. E. L. Michael, W. E. L. Grimson, and F. Olivier, “Statistical shape influence in geodesic active contours,” Computer Vision and Image Understanding, vol. 1, pp. 316–323, 2000.
  52. D. J. Williams and M. Shah, “A Fast algorithm for active contours and curvature estimation,” CVGIP, vol. 55, no. 1, pp. 14–26, 1992. View at Scopus
  53. S. G. Moursi and M. R. El-Sakka, “Active contours initialization for ultrasound carotid artery images,” in Proceedings of the 6th IEEE/ACS International Conference on Computer Systems and Applications (AICCSA '08), pp. 629–636, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. C. Bastida-Jumilla, J. Morales-Sánchez, R. Verdú-Monedero, J. Larrey-Ruiz, and J. L. Sancho-Gómez, “Detection of the intima and media walls of the carotid artery with geodesic active contours,” in Proceedings of the 17th IEEE International Conference on Image Processing (ICIP '10), pp. 2213–2216, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Mahmoud, A. Morsy, and E. De Groot, “A new gradient-based algorithm for edge detection in ultrasonic carotid artery images,” in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '10), pp. 5165–5168, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Molinari, G. Zeng, and J. S. Suri, “Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 5, pp. 1112–1124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Molinari, G. Zeng, and J. S. Suri, “Inter-Greedy technique for fusion of different carotid segmentation boundaries leading to high-performance IMT measurement,” in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '10), pp. 4769–4772, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. K. M. Meiburger, F. Molinari, G. Zeng, L. Saba, and J. S. Suri, “Carotid automated ultrasound double line extraction system (CADLES) via Edge-Flow,” in Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '11), pp. 575–578, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Molinari, K. M. Meiburger, U. R. Acharya et al., “CARES 3.0: a two stage system combining feature-based recognition and edge-based segmentation for CIMT measurement on a multi-institutional ultrasound database of 300 images,” in Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '11), pp. 5149–5152, September 2011. View at Publisher · View at Google Scholar · View at Scopus