About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 804391, 10 pages
http://dx.doi.org/10.1155/2013/804391
Review Article

Propionibacterium acnes: An Underestimated Pathogen in Implant-Associated Infections

1Microbiology Laboratory, Laboratori de Referencia de Catalunya, Barcelona, Spain
2Service de Bactériologie-Hygiène, CHU de Nantes, Institut de Biologie, Nantes Cedex, France
3Université de Nantes, EA3826, Thérapeutiques Cliniques et Expérimentales des Infections, 1 rue G. Veil, 44000 Nantes, France
4Orthopedic Septic Surgical Unit, Department of Surgery and Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
5Center for Musculoskeletal Surgery, Charité-University Medicine Berlin, Free University and Humboldt University, Charitéplatz 1, 10117 Berlin, Germany

Received 11 January 2013; Revised 20 August 2013; Accepted 4 October 2013

Academic Editor: Andrew McDowell

Copyright © 2013 María Eugenia Portillo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. A. Grice and J. A. Segre, “The skin microbiome,” Nature Reviews Microbiology, vol. 9, no. 4, pp. 244–253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Funke, A. Von Graevenitz, J. E. Clarridge III, and K. A. Bernard, “Clinical microbiology of Coryneform bacteria,” Clinical Microbiology Reviews, vol. 10, no. 1, pp. 125–159, 1997. View at Scopus
  3. H. Brüggemann, “Insights in the pathogenic potential of Propionibacterium acnes from its complete genome,” Seminars in Cutaneous Medicine and Surgery, vol. 24, no. 2, pp. 67–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Cohen, B. A. Shannon, J. E. McNeal, T. Shannon, and K. L. Garrett, “Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution?” Journal of Urology, vol. 173, no. 6, pp. 1969–1974, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Colina, A. Lo Monaco, M. Khodeir, and F. Trotta, “Propionibacterium acnes and SAPHO syndrome: a case report and literature review,” Clinical and Experimental Rheumatology, vol. 25, no. 3, pp. 457–460, 2007. View at Scopus
  6. T. Yamada, Y. Eishi, S. Ikeda et al., “In situ localization of Propionibacterium acnes DNA in lymph nodes from sarcoidosis patients by signal amplification with catalysed reporter deposition,” Journal of Pathology, vol. 198, no. 4, pp. 541–547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ichikawa, M. Kataoka, J. Hiramatsu et al., “Quantitative analysis of propionibacterial DNA in bronchoalveolar lavage cells from patients with sarcoidosis,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 25, no. 1, pp. 15–20, 2008. View at Scopus
  8. A. Stirling, T. Worthington, M. Rafiq, P. A. Lambert, and T. S. J. Elliott, “Association between sciatica and Propionibacterium acnes,” Lancet, vol. 357, no. 9273, pp. 2024–2025, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Del Pozo, N. V. Tran, P. M. Petty et al., “Pilot study of association of bacteria on breast implants with capsular contracture,” Journal of Clinical Microbiology, vol. 47, no. 5, pp. 1333–1337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. U. M. Rieger, G. Pierer, N. J. Lüscher, and A. Trampuz, “Sonication of removed breast implants for improved detection of subclinical infection,” Aesthetic Plastic Surgery, vol. 33, no. 3, pp. 404–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Conen, L. N. Walti, A. Merlo, U. Fluckiger, M. Battegay, and A. Trampuz, “Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period,” Clinical Infectious Diseases, vol. 47, no. 1, pp. 73–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Delahaye, S. Fol, M. Célard et al., “Propionibacterium acnes infective endocarditis. Study of 11 cases and review of literature,” Archives des Maladies du Coeur et des Vaisseaux, vol. 98, no. 12, pp. 1212–1218, 2005. View at Scopus
  13. V. A. Deramo and T. D. Ting, “Treatment of Propionibacterium acnes endophthalmitis,” Current Opinion in Ophthalmology, vol. 12, no. 3, pp. 225–229, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Haidar, M. Najjar, A. D. Boghossian, and Z. Tabbarah, “Propionibacterium acnes causing delayed postoperative spine infection: review,” Scandinavian Journal of Infectious Diseases, vol. 42, no. 6-7, pp. 405–411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. E. Piper, M. J. Jacobson, R. H. Cofield et al., “Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication,” Journal of Clinical Microbiology, vol. 47, no. 6, pp. 1878–1884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Delgado, A. Suárez, and B. Mayo, “Identification, typing and characterisation of Propionibacterium strains from healthy mucosa of the human stomach,” International Journal of Food Microbiology, vol. 149, no. 1, pp. 65–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. E. M. Gribbon, J. G. Shoesmith, W. J. Cunliffe, and K. T. Holland, “The microaerophily and photosensitivity of Propionibacterium acnes,” Journal of Applied Bacteriology, vol. 77, no. 5, pp. 583–590, 1994. View at Scopus
  18. J. H. Cove, K. T. Holland, and W. J. Cunliffe, “Effects of oxygen concentration on biomass production, maximum specific growth rate and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture,” Journal of General Microbiology, vol. 129, no. 11, pp. 3327–3334, 1983. View at Scopus
  19. Z. Csukás, B. Banizs, and F. Rozgonyi, “Studies on the cytotoxic effects of Propionibacterium acnes strains isolated from cornea,” Microbial Pathogenesis, vol. 36, no. 3, pp. 171–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Viraraghavan, B. Jantausch, and J. Campos, “Late-onset central nervous system shunt infections with Propionibacterium acnes: diagnosis and management,” Clinical Pediatrics, vol. 43, no. 4, pp. 393–397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Schäfer, B. Fink, D. Sandow, A. Margull, I. Berger, and L. Frommelt, “Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy,” Clinical Infectious Diseases, vol. 47, no. 11, pp. 1403–1409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Butler-Wu, E. M. Burns, P. S. Pottinger et al., “Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes prosthetic joint infection,” Journal of Clinical Microbiology, vol. 49, no. 7, pp. 2490–2495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Corvec, M. E. Portillo, B. M. Pasticci, O. Borens, and A. Trampuz, “Epidemiology and new developments in the diagnosis of prosthetic joint infection,” The International Journal of Artificial Organs, vol. 35, no. 10, pp. 923–934, 2012. View at Publisher · View at Google Scholar
  24. M. E. Portillo, M. Salvadó, A. Trampuz, et al., “Sonication versus vortexing of implants for diagnosis of prosthetic joint infection,” Journal of Clinical Microbiology, vol. 51, no. 2, pp. 591–594, 2013. View at Publisher · View at Google Scholar
  25. L. Guío, C. Sarriá, C. de Las Cuevas, C. Gamallo, and J. Duarte, “Chronic prosthetic valve endocarditis due to Propionibacterium acnes: an unexpected cause of prosthetic valve dysfunction,” Revista Espanola de Cardiologia, vol. 62, no. 2, pp. 167–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Perry and P. Lambert, “Propionibacterium acnes: infection beyond the skin,” Expert Review of Anti-Infective Therapy, vol. 9, no. 12, pp. 1149–1156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Johnson and C. S. Cummins, “Cell wall composition and deoxyribonucleic acid similarities among the anaerobic coryneforms, classical propionibacteria, and strains of Arachnia propionica,” Journal of Bacteriology, vol. 109, no. 3, pp. 1047–1066, 1972. View at Scopus
  28. A. McDowell, A. L. Perry, P. A. Lambert, and S. Patrick, “A new phylogenetic group of Propionibacterium acnes,” Journal of Medical Microbiology, vol. 57, no. 2, pp. 218–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. McDowell, S. Valanne, G. Ramage et al., “Propionibacterium acnes types I and II represent phylogenetically distinct groups,” Journal of Clinical Microbiology, vol. 43, no. 1, pp. 326–334, 2005.
  30. E. Nagy, E. Urban, S. Becker, et al., “MALDI-TOF MS fingerprinting facilitates rapid discrimination of phylotypes I, II and III of Propionibacterium acnes,” Anaerobe, vol. 20, pp. 20–26, 2013.
  31. S. Valanne, A. McDowell, G. Ramage et al., “CAMP factor homologues in Propionibacterium acnes: a new protein family differentially expressed by types I and II,” Microbiology, vol. 151, no. 5, pp. 1369–1379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Brzuszkiewicz, J. Weiner, A. Wollherr et al., “Comparative genomics and transcriptomics of Propionibacterium acnes,” PLoS ONE, vol. 6, no. 6, Article ID e21581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Hunyadkürti, Z. Feltóti, B. Horváth et al., “Complete genome sequence of Propionibacterium acnes type IB strain 6609,” Journal of Bacteriology, vol. 193, no. 17, pp. 4561–4562, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. F. Sampedro, K. E. Piper, A. McDowell et al., “Species of Propionibacterium and Propionibacterium acnes phylotypes associated with orthopedic implants,” Diagnostic Microbiology and Infectious Disease, vol. 64, no. 2, pp. 138–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Cobo and J. L. Del Pozo, “Prosthetic joint infection: diagnosis and management,” Expert Review of Anti-Infective Therapy, vol. 9, no. 9, pp. 787–802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Trampuz, K. E. Piper, M. J. Jacobson et al., “Sonication of removed hip and knee prostheses for diagnosis of infection,” The New England Journal of Medicine, vol. 357, no. 7, pp. 654–663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Zimmerli, A. Trampuz, and P. E. Ochsner, “Current concepts: prosthetic-joint infections,” The New England Journal of Medicine, vol. 351, no. 16, pp. 1645–1654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. L. Del Pozo and R. Patel, “Infection associated with prosthetic joints,” The New England Journal of Medicine, vol. 361, no. 8, pp. 787–794, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. F. Sampedro, P. M. Huddleston, K. E. Piper et al., “A biofilm approach to detect bacteria on removed spinal implants,” Spine, vol. 35, no. 12, pp. 1218–1224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Bori, A. Soriano, S. García et al., “Low sensitivity of histology to predict the presence of microorganisms in suspected aseptic loosening of a joint prosthesis,” Modern Pathology, vol. 19, no. 6, pp. 874–877, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. C. C. Dodson, E. V. Craig, F. A. Cordasco et al., “Propionibacterium acnes infection after shoulder arthroplasty: a diagnostic challenge,” Journal of Shoulder and Elbow Surgery, vol. 19, no. 2, pp. 303–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. K. E. Piper, M. Fernandez-Sampedro, K. E. Steckelberg et al., “C-reactive protein, erythrocyte sedimentation rate and orthopedic implant infection,” PLoS ONE, vol. 5, no. 2, Article ID e9358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Trampuz, A. D. Hanssen, D. R. Osmon, J. Mandrekar, J. M. Steckelberg, and R. Patel, “Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection,” American Journal of Medicine, vol. 117, no. 8, pp. 556–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Trampuz, J. Steinrücken, M. Clauss et al., “New methods for the diagnosis of implant-associated infections,” Revue Medicale Suisse, vol. 6, no. 243, pp. 731–734, 2010. View at Scopus
  45. O. Borens, F. Nussbaumer, R. Baalbaki, and A. Trampuz, “Update on implant related infections in orthopaedic surgery. Diagnosis and treatment,” Revue Medicale Suisse, vol. 5, no. 230, pp. 2563–2568, 2009. View at Scopus
  46. M. E. Portillo, M. Salvadó, L. Sorli, et al., “Multiplex PCR of sonication fluid accurately differentiates between prosthetic joint infection and aseptic failure,” Journal of Infection, vol. 65, no. 6, pp. 541–548, 2012. View at Publisher · View at Google Scholar
  47. Y. Achermann, M. Vogt, M. Leimig, J. Wüst, and A. Trampuz, “Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants,” Journal of Clinical Microbiology, vol. 48, no. 4, pp. 1208–1214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. L. Nelson, A. C. McLaren, S. G. McLaren, J. W. Johnson, and M. S. Smeltzer, “Is aseptic loosening truly aseptic?” Clinical Orthopaedics and Related Research, no. 437, pp. 25–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. J. M. Sierra, S. García, J. C. Martínez-Pastor et al., “Relationship between the degree of osteolysis and cultures obtained by sonication of the prostheses in patients with aseptic loosening of a hip or knee arthroplasty,” Archives of Orthopaedic and Trauma Surgery, vol. 131, no. 10, pp. 1357–1361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Holinka, L. Bauer, A. M. Hirschl, W. Graninger, R. Windhager, and E. Presterl, “Sonication cultures of explanted components as an add-on test to routinely conducted microbiological diagnostics improve pathogen detection,” Journal of Orthopaedic Research, vol. 29, no. 4, pp. 617–622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. E. Portillo, M. Salvadó, A. Alier, et al., “Prosthesis failure within 2 years of implantation is highly predictive of infection,” Clinical Orthopaedics and Related Research, vol. 471, no. 11, pp. 3672–3678, 2013. View at Publisher · View at Google Scholar
  52. W. Y. Vanagt, W. J. Daenen, and T. Delhaas, “Propionibacterium acnes endocarditis on an annuloplasty ring in an adolescent boy,” Heart, vol. 90, no. 9, p. e56, 2004. View at Scopus
  53. A. H. Mohsen, A. Price, E. Ridgway, J. N. West, S. Green, and M. W. McKendrick, “Propionibacterium acnes endocarditis in a native valve comlicated by intraventricular abscess: a case report and review,” Scandinavian Journal of Infectious Diseases, vol. 33, no. 5, pp. 379–380, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Gunthard, A. Hany, M. Turina, and J. Wust, “Propionibacterium acnes as a cause of aggressive aortic valve endocarditis and importance of tissue grinding: case report and review,” Journal of Clinical Microbiology, vol. 32, no. 12, pp. 3043–3045, 1994. View at Scopus
  55. T. Lalani, A. K. Person, S. S. Hedayati et al., “Propionibacterium endocarditis: a case series from the International Collaboration on Endocarditis Merged Database and Prospective Cohort Study,” Scandinavian Journal of Infectious Diseases, vol. 39, no. 10, pp. 840–848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. D. T. Durack, A. S. Lukes, and D. K. Bright, “New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings,” American Journal of Medicine, vol. 96, no. 3, pp. 200–209, 1994. View at Scopus
  57. S. Durupt, A. Boibieux, M. Ballet-Mechain et al., “Propionibacterium acnes endocarditis: two cases and a review of the literature,” Presse Medicale, vol. 27, no. 36, pp. 1839–1841, 1998. View at Scopus
  58. T. T. Huynh, A. D. Walling, M. A. Miller, T. K. Leung, Y. Leclerc, and L. Dragtakis, “Propionibacterium acnes endocarditis,” Canadian Journal of Cardiology, vol. 11, no. 9, pp. 785–787, 1995. View at Scopus
  59. R. R. Cook and L. L. Perkins, “The prevalence of breast implants among women in the United States,” Current Topics in Microbiology and Immunology, vol. 210, pp. 418–425, 1996. View at Scopus
  60. R. C. Herdman and T. J. Fahey, “Silicone breast implants and cancer,” Cancer Investigation, vol. 19, no. 8, pp. 821–832, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. L. L. Washer and K. Gutowski, “Breast implant infections,” Infectious disease clinics of North America, vol. 26, no. 1, pp. 111–125, 2012. View at Scopus
  62. B. Pittet, D. Montandon, and D. Pittet, “Infection in breast implants,” Lancet Infectious Diseases, vol. 5, no. 2, pp. 94–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. R. O. Darouiche, “Treatment of infections associated with surgical implants,” The New England Journal of Medicine, vol. 350, no. 14, pp. 1422–1429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. V. L. Young and M. E. Watson, “Breast implant research: where we have been, where we are, where we need to go,” Clinics in Plastic Surgery, vol. 28, no. 3, pp. 451–483, 2001. View at Scopus
  65. R. A. Ersek, “Rate and incidence of capsular contracture: a comparison of smooth and textured silicone double-lumen breast prostheses,” Plastic and Reconstructive Surgery, vol. 87, no. 5, pp. 879–884, 1991. View at Scopus
  66. S. E. Gabriel, J. E. Woods, W. M. O'Fallon, C. M. Beard, L. T. Kurland, and L. J. Melton III, “Complications leading to surgery after breast implantation,” The New England Journal of Medicine, vol. 336, no. 10, pp. 677–682, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. S. L. Spear, J. L. Baker Jr., and H. H. Caffee, “Classification of capsular contracture after prosthetic breast reconstruction,” Plastic and Reconstructive Surgery, vol. 96, no. 5, pp. 1119–1124, 1995. View at Scopus
  68. M. Embrey, E. E. Adams, B. Cunningham, W. Peters, V. L. Young, and G. L. Carlo, “A review of the literature on the etiology of capsular contracture and a pilot study to determine the outcome of capsular contracture interventions,” Aesthetic Plastic Surgery, vol. 23, no. 3, pp. 197–206, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. D. T. Netscher and A. K. Deva, “Subclinical infection as a possible cause of significant breast capsules,” Plastic and Reconstructive Surgery, vol. 113, no. 7, pp. 2229–2230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Pajkos, A. K. Deva, K. Vickery, C. Cope, L. Chang, and Y. E. Cossart, “Detection of subclinical infection in significant breast implant capsules,” Plastic and Reconstructive Surgery, vol. 111, no. 5, pp. 1605–1611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. U. M. Rieger, J. Mesina, D. F. Kalbermatten, et al., “Bacterial biofilms and capsular contracture in patients with breast implants,” British Journal of Surgery, vol. 100, pp. 768–774, 2013.
  72. C. Y. Ahn, C. Y. Ko, E. A. Wagar, R. S. Wong, and W. W. Shaw, “Microbial evaluation: 139 Implants removed from symptomatic patients,” Plastic and Reconstructive Surgery, vol. 98, no. 7, pp. 1225–1229, 1996. View at Scopus
  73. M. S. Kresloff, A. A. Castellarin, and M. A. Zarbin, “Endophthalmitis,” Survey of Ophthalmology, vol. 43, no. 3, pp. 193–224, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. R. P. Casaroli-Marano and A. Adán, “Eye infections associated with ocular implants,” Enfermedades Infecciosas y Microbiologia Clinica, vol. 26, no. 9, pp. 581–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. C. P. Lohmann, H.-J. Linde, and U. Reischl, “Improved detection of microorganisms by polymerase chain reaction in delayed endophthalmitis after cataract surgery,” Ophthalmology, vol. 107, no. 6, pp. 1047–1052, 2000, discussion 1051–1042. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Adán, R. P. Casaroli-Marano, O. Gris et al., “Pathological findings in the lens capsules and intraocular lens in chronic pseudophakic endophthalmitis: an electron microscopy study,” Eye, vol. 22, no. 1, pp. 113–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. K. Rahman and E. R. Holz, “Alcaligenes xylosoxidans and Propionibacterium acnes postoperative endophthalmitis in a pseudophakic eye,” American Journal of Ophthalmology, vol. 129, no. 6, pp. 813–815, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. Association H, October 2013, http://www.hydroassoc.org/.
  79. C. Baird, D. O'Connor, and T. Pittman, “Late shunt infections,” Pediatric Neurosurgery, vol. 31, no. 5, pp. 269–273, 1999. View at Scopus
  80. B. Ratilal, J. Costa, and C. Sampaio, “Antibiotic prophylaxis for surgical introduction of intracranial ventricular shunts: a systematic review,” Journal of Neurosurgery: Pediatrics, vol. 1, no. 1, pp. 48–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. D. J. Isaacman, M. P. Poirier, M. Hegenbarth, K. A. Lillis, and R. Scarfone, “Ventriculoperitoneal shunt management,” Pediatric Emergency Care, vol. 19, no. 2, pp. 119–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. S. J. Schiff and W. J. Oakes, “Delayed cerebrospinal-fluid shunt infection in children,” Pediatric Neuroscience, vol. 15, no. 3, pp. 131–135, 1989. View at Scopus
  83. M. Vinchon, M.-P. Lemaitre, L. Vallée, and P. Dhellemmes, “Late shunt infection: incidence, pathogenesis, and therapeutic implications,” Neuropediatrics, vol. 33, no. 4, pp. 169–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Renier, J. Lacombe, and A. Pierre-Kahn, “Factors causing acute shunt infection. Computer analysis of 1174 operations,” Journal of Neurosurgery, vol. 61, no. 6, pp. 1072–1078, 1984. View at Scopus
  85. N. P. Barnes, S. J. Jones, R. D. Hayward, W. J. Harkness, and D. Thompson, “Ventriculoperitoneal shunt block: what are the best predictive clinical indicators?” Archives of Disease in Childhood, vol. 87, no. 3, pp. 198–201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. D. J. Gower, J. C. Lewis, and D. L. Kelly Jr., “Sterile shunt malfunction. A scanning electron microscopic perspective,” Journal of Neurosurgery, vol. 61, no. 6, pp. 1079–1084, 1984. View at Scopus
  87. T. Pittman, D. Wiliams, M. Rathore, A. P. Knutsen, and K. R. Mueller, “The role of ethylene oxide allergy in sterile shunt malfunctions,” British Journal of Neurosurgery, vol. 8, no. 1, pp. 41–45, 1994. View at Scopus
  88. S. Tuli, J. Drake, J. Lawless, M. Wigg, and M. Lamberti-Pasculli, “Risk factors for repeated cerebrospinal shunt failures in pediatric patients with hydrocephalus,” Journal of Neurosurgery, vol. 92, no. 1, pp. 31–38, 2000. View at Scopus
  89. D. H. Fulkerson and J. C. Boaz, “Cerebrospinal fluid eosinophilia in children with ventricular shunts,” Journal of Neurosurgery: Pediatrics, vol. 1, no. 4, pp. 288–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Westergren, V. Westergren, and U. Forsum, “Propionebacterium acnes in cultures from ventriculo-peritoneal shunts: infection or contamination?” Acta Neurochirurgica, vol. 139, no. 1, pp. 33–36, 1997. View at Publisher · View at Google Scholar · View at Scopus
  91. D. H. Fulkerson, S. Vachhrajani, B. N. Bohnstedt et al., “Analysis of the risk of shunt failure or infection related to cerebrospinal fluid cell count, protein level, and glucose levels in low-birth-weight premature infants with posthemorrhagic hydrocephalus,” Journal of Neurosurgery: Pediatrics, vol. 7, no. 2, pp. 147–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Bezerra, T. M. Frigeri, C. M. Severo, J. C. B. Santana, and C. Graeff-Teixeira, “Cerebrospinal fluid eosinophilia associated with intraventricular shunts,” Clinical Neurology and Neurosurgery, vol. 113, no. 5, pp. 345–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. R. T. Schreffler, A. J. Schreffler, and R. R. Wittler, “Treatment of cerebrospinal fluid shunt infections: a decision analysis,” Pediatric Infectious Disease Journal, vol. 21, no. 7, pp. 632–636, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. M. J. McGirt, J. C. Wellons III, S. M. Nimjee, K. R. Bulsara, H. E. Fuchs, and T. M. George, “Comparison of total versus partial revision of initial ventriculoperitoneal shunt failures,” Pediatric Neurosurgery, vol. 38, no. 1, pp. 34–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. S. L. Parker, W. N. Anderson, S. Lilienfeld, J. T. Megerian, and M. J. Mcgirt, “Cerebrospinal shunt infection in patients receiving antibiotic-impregnated versus standard shunts: a review,” Journal of Neurosurgery: Pediatrics, vol. 8, no. 3, pp. 259–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. A. P. Lozier, R. R. Sciacca, M. F. Romagnoli et al., “Ventriculostomy-related infections: a critical review of the literature,” Neurosurgery, vol. 51, no. 1, pp. 170–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Arabi, Z. A. Memish, H. H. Balkhy et al., “Ventriculostomy-associated infections: incidence and risk factors,” American Journal of Infection Control, vol. 33, no. 3, pp. 137–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. R. P. Schade, J. Schinkel, L. G. Visser, M. C. Van Dijk, J. H. C. Voormolen, and E. J. Kuijper, “Bacterial meningitis caused by the use of ventricular or lumbar cerebrospinal fluid catheters,” Journal of Neurosurgery, vol. 102, no. 2, pp. 229–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. C. G. Mayhall, N. H. Archer, and V. A. Lamb, “Ventriculostomy-related infections. A positive epidemiologic study,” The New England Journal of Medicine, vol. 310, no. 9, pp. 553–559, 1984. View at Scopus
  100. K. E. Lyke, O. O. Obasanjo, M. A. Williams, M. O'Brien, R. Chotani, and T. M. Perl, “Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients,” Clinical Infectious Diseases, vol. 33, no. 12, pp. 2028–2033, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. P. J. Aucoin, H. Rosen Kotilainen, and N. M. Gantz, “Intracranial pressure monitors. Epidemiologic study of risk factors and infections,” American Journal of Medicine, vol. 80, no. 3, pp. 369–376, 1986. View at Scopus
  102. D. Hoefnagel, R. Dammers, M. P. Ter Laak-Poort, and C. J. J. Avezaat, “Risk factors for infections related to external ventricular drainage,” Acta Neurochirurgica, vol. 150, no. 3, pp. 209–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. G. K. C. Wong, W. S. Poon, S. Wai, L. M. Yu, D. Lyon, and J. M. K. Lam, “Failure of regular external ventricular drain exchange to reduce cerebrospinal fluid infection: result of a randomised controlled trial,” Journal of Neurology Neurosurgery and Psychiatry, vol. 73, no. 6, pp. 759–761, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. W. Pfisterer, M. Mühlbauer, T. Czech, and A. Reinprecht, “Early diagnosis of external ventricular drainage infection: results of a prospective study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 74, no. 7, pp. 929–932, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. C. H. Lo, D. Spelman, M. Bailey, D. J. Cooper, J. V. Rosenfeld, and J. E. Brecknell, “External ventricular drain infections are independent of drain duration: an argument against elective revision,” Journal of Neurosurgery, vol. 106, no. 3, pp. 378–383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. G. K. C. Wong and W. W. S. Poon, “External ventricular drain infection,” Journal of Neurosurgery, vol. 107, no. 1, pp. 248–249, 2007. View at Scopus
  107. M. A. Leverstein-Van Hall, T. E. M. Hopmans, J. W. B. van der Sprenkel et al., “A bundle approach to reduce the incidence of external ventricular and lumbar drain-related infections: clinical article,” Journal of Neurosurgery, vol. 112, no. 2, pp. 345–353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. R. Beer, P. Lackner, B. Pfausler, and E. Schmutzhard, “Nosocomial ventriculitis and meningitis in neurocritical care patients,” Journal of Neurology, vol. 255, no. 11, pp. 1617–1624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. D. Dasic, S. J. Hanna, S. Bojanic, and R. S. C. Kerr, “External ventricular drain infection: the effect of a strict protocol on infection rates and a review of the literature,” British Journal of Neurosurgery, vol. 20, no. 5, pp. 296–300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. A. M. Sonabend, Y. Korenfeld, C. Crisman, N. Badjatia, S. A. Mayer, and E. S. Connolly, “Prevention of ventriculostomy-related infections with prophylactic antibiotics and antibiotic-coated external ventricular drains: a systematic review,” Neurosurgery, vol. 68, no. 4, pp. 996–1005, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Sundbarg, C.-H. Nordstrom, and S. Soderstrom, “Complications due to prolonged ventricular fluid pressure recording,” British Journal of Neurosurgery, vol. 2, no. 4, pp. 485–495, 1988. View at Scopus
  112. S. Muttaiyah, S. Ritchie, A. Upton, and S. Roberts, “Clinical parameters do not predict infection in patients with external ventricular drains: a retrospective observational study of daily cerebrospinal fluid analysis,” Journal of Medical Microbiology, vol. 57, no. 2, pp. 207–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. G. K. Wong, W. S. Poon, and M. Ip, “Use of ventricular cerebrospinal fluid lactate measurement to diagnose cerebrospinal fluid infection in patients with intraventricular haemorrhage,” Journal of Clinical Neuroscience, vol. 15, no. 6, pp. 654–655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. B. Pfausler, R. Beer, K. Engelhardt et al., “Cell index—a new parameter for the early diagnosis of ventriculostomy (external ventricular drainage)-related ventriculitis in patients with intraventricular hemorrhage?” Acta Neurochirurgica, vol. 146, no. 5, pp. 477–481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. R. P. Schade, J. Schinkel, F. W. C. Roelandse et al., “Lack of value of routine analysis of cerebrospinal fluid for prediction and diagnosis of external drainage-related bacterial meningitis,” Journal of Neurosurgery, vol. 104, no. 1, pp. 101–108, 2006. View at Scopus
  116. W. J. Hader and P. Steinbok, “The value of routine cultures of the cerebrospinal fluid in patients with external ventricular drains,” Neurosurgery, vol. 46, no. 5, pp. 1149–1155, 2000. View at Scopus
  117. L. N. Walti, A. Conen, J. Coward, G. F. Jost, and A. Trampuz, “Characteristics of infections associated with external ventricular drains of cerebrospinal fluid,” Journal of Infection, vol. 66, pp. 424–431, 2013.
  118. P. Bémer, S. Corvec, S. Tariel et al., “Significance of Propionibacterium acnes-positive samples in spinal instrumentation,” Spine, vol. 33, no. 26, pp. E971–976, 2008. View at Scopus
  119. S. B. Chaudhary, M. J. Vives, S. K. Basra, and M. F. Reiter, “Postoperative spinal wound infections and postprocedural diskitis,” Journal of Spinal Cord Medicine, vol. 30, no. 5, pp. 441–451, 2007. View at Scopus
  120. B. Bose, “Delayed infection after instrumented spine surgery: case reports and review of the literature,” Spine Journal, vol. 3, no. 5, pp. 394–399, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. I. Collins, J. Wilson-MacDonald, G. Chami et al., “The diagnosis and management of infection following instrumented spinal fusion,” European Spine Journal, vol. 17, no. 3, pp. 445–450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. T. J. Kowalski, E. F. Berbari, P. M. Huddleston, J. M. Steckelberg, J. N. Mandrekar, and D. R. Osmon, “The management and outcome of spinal implant infections: contemporary retrospective cohort study,” Clinical Infectious Diseases, vol. 44, no. 7, pp. 913–920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. I. S. Kourbeti, S. Tsiodras, and D. T. Boumpas, “Spinal infections: evolving concepts,” Current Opinion in Rheumatology, vol. 20, no. 4, pp. 471–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. D. L. Balériaux and C. Neugroschl, “Spinal and spinal cord infection,” European Radiology, Supplement, vol. 14, no. 3, pp. E72–E83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. A. D. O. Levi, C. A. Dickman, and V. K. H. Sonntag, “Management of postoperative infections after spinal instrumentation,” Journal of Neurosurgery, vol. 86, no. 6, pp. 975–980, 1997. View at Scopus
  126. M. A. Weinstein, J. P. McCabe, and F. P. Cammisa Jr., “Postoperative spinal wound infection: a review of 2,391 consecutive index procedures,” Journal of Spinal Disorders, vol. 13, no. 5, pp. 422–426, 2000. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Richards, “Delayed infections following posterior spinal instrumentation for the treatment of idiopathic scoliosis,” Journal of Bone and Joint Surgery. American, vol. 77, no. 4, pp. 524–529, 1995. View at Scopus
  128. L. Crémet, S. Corvec, P. Bémer et al., “Orthopaedic-implant infections by Escherichia coli: molecular and phenotypic analysis of the causative strains,” Journal of Infection, vol. 64, no. 2, pp. 169–175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  129. D. R. Osmon, E. F. Berbari, A. R. Berendt, et al., “Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America,” Clinical Infectious Diseases, vol. 56, pp. e1–e25, 2013.
  130. C. Oprica, C. E. Nord, S. Kalenic et al., “European surveillance study on the antibiotic susceptibility of Propionibacterium acnes,” Clinical Microbiology and Infection, vol. 11, no. 3, pp. 204–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. U. F. Tafin, S. Corvec, B. Betrisey, W. Zimmerli, and A. Trampuz, “Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 4, pp. 1885–1891, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. M. Rohacek, M. Weisser, R. Kobza et al., “Bacterial colonization and infection of electrophysiological cardiac devices detected with sonication and swab culture,” Circulation, vol. 121, no. 15, pp. 1691–1697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Trampuz, K. E. Piper, A. D. Hanssen et al., “Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination,” Journal of Clinical Microbiology, vol. 44, no. 2, pp. 628–631, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. G. Ramage, M. M. Tunney, S. Patrick, S. P. Gorman, and J. R. Nixon, “Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials,” Biomaterials, vol. 24, no. 19, pp. 3221–3227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Bayston, W. Ashraf, R. Barker-Davies et al., “Biofilm formation by Propionibacterium acnes on biomaterials in vitro and in vivo: impact on diagnosis and treatment,” Journal of Biomedical Materials Research Part A, vol. 81, no. 3, pp. 705–709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. A.-L. Roux, V. Sivadon-Tardy, T. Bauer et al., “Diagnosis of prosthetic joint infection by beadmill processing of a periprosthetic specimen,” Clinical Microbiology and Infection, vol. 17, no. 3, pp. 447–450, 2011. View at Publisher · View at Google Scholar · View at Scopus