About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 804632, 8 pages
http://dx.doi.org/10.1155/2013/804632
Research Article

Human Resistin Inhibits Myogenic Differentiation and Induces Insulin Resistance in Myocytes

1Department of Central Research, The Third Clinical College, Jilin University, Changchun, Jilin 130033, China
2Cell Transplantation Center, The 208th Hospital of Chinese People's Liberation Army, Changchun, Jilin 130021, China

Received 21 August 2012; Revised 6 December 2012; Accepted 21 December 2012

Academic Editor: Joseph Fomusi Ndisang

Copyright © 2013 Chun Hua Sheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Steppan, S. T. Bailey, S. Bhat et al., “The hormone resistin links obesity to diabetes,” Nature, vol. 409, no. 6818, pp. 307–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. W. Rajala, S. Obici, P. E. Scherer, and L. Rossetti, “Adipose-derived resistin and gut-derived resistin-like molecule-β selectively impair insulin action on glucose production,” Journal of Clinical Investigation, vol. 111, no. 2, pp. 225–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Q. Fan, N. Gu, F. Liu et al., “Prolonged exposure to resistin inhibits glucose uptake in rat skeletal muscles,” Acta Pharmacologica Sinica, vol. 28, no. 3, pp. 410–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. D. Muse, T. K. T. Lam, P. E. Scherer, and L. Rossetti, “Hypothalamic resistin induces hepatic insulin resistance,” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1670–1678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. H. Kim, L. Zhao, Y. Moon, C. Kang, and H. S. Sul, “Dominant inhibitory adipocyte-specific secretory factor (ADSF)/resistin enhances adipogenesis and improves insulin sensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6780–6785, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Steppan and M. A. Lazar, “The current biology of resistin,” Journal of Internal Medicine, vol. 255, no. 4, pp. 439–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. G. McTernan, F. M. Fisher, G. Valsamakis et al., “Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 12, pp. 6098–6106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Farvid, T. W. K. Ng, D. C. Chan, P. H. R. Barrett, and G. F. Watts, “Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia,” Diabetes, Obesity and Metabolism, vol. 7, no. 4, pp. 406–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Janowska, B. Zahorska-Markiewicz, and M. Olszanecka-Glinianowicz, “Relationship between serum resistin concentration and proinflammatory cytokines in obese women with impaired and normal glucose tolerance,” Metabolism, vol. 55, no. 11, pp. 1495–1499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Nagaev and U. Smith, “Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle,” Biochemical and Biophysical Research Communications, vol. 285, no. 2, pp. 561–564, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. C. C. Zou, L. Liang, F. Hong, J. F. Fu, and Z. Y. Zhao, “Serum adiponectin, resistin levels and non-alcoholic fatty liver disease in obese children,” Endocrine Journal, vol. 52, no. 5, pp. 519–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. H. Kim, K. Lee, Y. S. Moon, and H. S. Sul, “A cysteine-richa diposet issue-specifics ecretory factor inhibits adipocyte diferentiation,” The Journal of Biological Chemistry, vol. 276, pp. 11252–11256.
  13. R. Nogueiras, R. Gallego, O. Gualillo et al., “Resistin is expressed in different rat tissues and is regulated in a tissue- and gender-specific manner,” FEBS Letters, vol. 548, no. 1–3, pp. 21–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Ort, A. A. Arjona, J. R. MacDougall et al., “Recombinant human FIZZ3/resistin stimulates lipolysis in cultured human adipocytes, mouse adipose explants, and normal mice,” Endocrinology, vol. 146, no. 5, pp. 2200–2209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. D. Patel, M. W. Rajala, L. Rossetti, P. E. Scherer, and L. Shapiro, “Disulfide-dependent multimeric assembly of Resistin family hormones,” Science, vol. 304, no. 5674, pp. 1154–1158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Aruna, S. Ghosh, A. K. Singh et al., “Human recombinant resistin protein displays a tendency to aggregate by forming intermolecular disulfide linkages,” Biochemistry, vol. 42, no. 36, pp. 10554–10559, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Hari, V. Brault, M. Kléber et al., “Lineage-specific requirements of β-catenin in neural crest development,” Journal of Cell Biology, vol. 159, no. 5, pp. 867–880, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Nakamori, M. Emoto, N. Fukuda et al., “Myosin motor Myo1c and its receptor NEMO/IKK-γ promote TNF-α-induced serine307 phosphorylation of IRS-1,” Journal of Cell Biology, vol. 173, no. 5, pp. 665–671, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Kusminski, N. F. Da Silva, S. J. Creely et al., “The in vitro effects of resistin on the innate immune signaling pathway in isolated human subcutaneous adipocytes,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 1, pp. 270–276, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Dietze, M. Koenen, and K. Röhrig, “Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes,” Diabetes, vol. 51, no. 8, pp. 2369–2376, 2002.
  21. R. Palanivel, A. Maida, Y. Liu, and G. Sweeney, “Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin,” Diabetologia, vol. 49, no. 1, pp. 183–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Moon, J. J. M. Kwan, N. Duddy, G. Sweeney, and N. Begum, “Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation,” American Journal of Physiology, vol. 285, no. 1, pp. E106–E115, 2003. View at Scopus
  23. T. Tamaki, A. Akatsuka, K. Ando et al., “Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle,” Journal of Cell Biology, vol. 157, no. 4, pp. 571–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Coll, D. Álvarez-Guardia, E. Barroso et al., “Activation of peroxisome proliferator-activated receptor-δ by GW501516 prevents fatty acid-induced nuclear factor-κB activation and insulin resistance in skeletal muscle cells,” Endocrinology, vol. 151, no. 4, pp. 1560–1569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Blagoev, I. Kratchmarova, M. M. Nielsen et al., “Inhibition of adipocyte differentiation by resistin-like molecule α: biochemical characterization of its oligomeric nature,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 42011–42016, 2002. View at Publisher · View at Google Scholar · View at Scopus