About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 805467, 12 pages
http://dx.doi.org/10.1155/2013/805467
Research Article

Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

1Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA
2Department of Life Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA

Received 30 April 2013; Revised 11 August 2013; Accepted 26 August 2013

Academic Editor: Mark R. Wick

Copyright © 2013 Sarah E. Van Dine et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Altman, “Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer,” Journal of Comparative Neurology, vol. 145, no. 3, pp. 353–397, 1972. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Altman, “Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer,” Journal of Comparative Neurology, vol. 145, no. 4, pp. 399–463, 1972. View at Scopus
  3. J. Altman, “Morphological development of the rat cerebellum and some of its mechanisms,” in The Cerebellum-New Vistas, S. L. Palay and V. Chan-Palay, Eds., pp. 8–49, Springer, Berlin, Germany, 1982.
  4. J. Altman and S. A. Bayer, “Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells,” Journal of Comparative Neurology, vol. 231, no. 1, pp. 42–65, 1985. View at Scopus
  5. D. B. de Bernabé, H. van Bokhoven, E. van Beusekom et al., “A homozygous nonsense mutation in the fukutin gene causes a Walker-Warburg syndrome phenotype,” Journal of Medical Genetics, vol. 40, no. 11, pp. 845–848, 2003. View at Scopus
  6. R. J. Ferland, W. Eyaid, R. V. Collura et al., “Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome,” Nature Genetics, vol. 36, no. 9, pp. 1008–1013, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Juric-Sekhar, R. P. Kapur, I. A. Glass, M. L. Murray, S. E. Parnell, and R. F. Hevner, “Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III,” Acta Neuropathologica, vol. 121, no. 4, pp. 545–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Winter, J. Wigglesworth, and B. N. Harding, “Osteodysplastic primordial dwarfism: report of a further patient with manifestations similar to those seen in patients with types I and III,” American Journal of Medical Genetics, vol. 21, no. 3, pp. 569–574, 1985. View at Scopus
  9. E. B. Ezerman and L. F. Kromer, “Outbred Sprague-Dawley rats from two breeders exhibit different incidences of neuroanatomical abnormalities affecting the primary cerebellar fissure,” Experimental Brain Research, vol. 59, no. 3, pp. 625–628, 1985. View at Scopus
  10. W. S. T. Griffin, M. A. E. Eriksson, and M. del Cerro, “Naturally occurring alterations of cortical layers surrounding the fissura prima of rat cerebellum,” Journal of Comparative Neurology, vol. 192, no. 1, pp. 109–118, 1980. View at Scopus
  11. S. Cerri, V. M. Piccolini, and G. Bernocchi, “Postnatal development of the central nervous system: anomalies in the formation of cerebellum fissures,” The Anatomical Record, vol. 293, no. 3, pp. 492–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Necchi and E. Scherini, “The malformation of the cerebellar fissura prima: a tool for studying histogenetic processes,” Cerebellum, vol. 1, no. 2, pp. 137–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Necchi, C. Soldani, G. Bernocchi, and E. Scherini, “Development of the anatomical alteration of the cerebellar fissura prima,” The Anatomical Record, vol. 259, no. 2, pp. 150–156, 2000.
  14. R. L. Stoughton, M. del Cerro, J. R. Walker, and J. R. Swarz, “Presence of displaced neural elements within rat cerebellar fissures,” Brain Research, vol. 148, no. 1, pp. 15–29, 1978. View at Publisher · View at Google Scholar · View at Scopus
  15. R. L. Ramos, P. T. Smith, C. Decola, D. Tam, O. Corzo, and J. C. Brumberg, “Cytoarchitecture and transcriptional profiles of neocortical malformations in inbred mice,” Cerebral Cortex, vol. 18, no. 11, pp. 2614–2628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. M. Lipoff, A. Bhambri, G. J. Fokas et al., “Neocortical molecular layer heterotopia in substrains of C57BL/6 and C57BL/10 mice,” Brain Research, vol. 1391, pp. 36–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Mangaru, E. Salem, M. Sherman et al., “Neuronal migration defect of the developing cerebellar vermis in substrains of C57BL/6 mice: cytoarchitecture and prevalence of molecular layer heterotopia,” Developmental Neuroscience, vol. 35, no. 1, pp. 28–39, 2013.
  18. S. E. van Dine, E. Salem, D. Patel, E. George, and R. L. Ramos, “Axonal anatomy of molecular layer heterotopia of the cerebellar vermis,” Journal of Chemical Neuroanatomy, vol. 47, pp. 90–95, 2013.
  19. J. Takács, R. Zaninetti, J. Víg, C. Vastagh, and J. Hámori, “Postnatal expression of Doublecortin (Dcx) in the developing cerebellar cortex of mouse,” Acta Biologica Hungarica, vol. 59, no. 2, pp. 147–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. L. Scotti and C. Nitsch, “Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28k immunoreactivity,” Anatomy and Embryology, vol. 185, no. 2, pp. 163–167, 1992. View at Scopus
  21. M. R. Celio, “Calbindin D-28k and parvalbumin in the rat nervous system,” Neuroscience, vol. 35, no. 2, pp. 375–475, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Rogers, “Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum,” Neuroscience, vol. 31, no. 3, pp. 711–721, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Arai, D. M. Jacobowitz, and S. Deura, “Ultrastructural localization of calretinin immunoreactivity in lobule V of the rat cerebellum,” Brain Research, vol. 613, no. 2, pp. 300–304, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Diño, F. H. Willard, and E. Mugnaini, “Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex,” Journal of Neurocytology, vol. 28, no. 2, pp. 99–123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Imai, I. Ibata, D. Ito, K. Ohsawa, and S. Kohsaka, “A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage,” Biochemical and Biophysical Research Communications, vol. 224, no. 3, pp. 855–862, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Ito, Y. Imai, K. Ohsawa, K. Nakajima, Y. Fukuuchi, and S. Kohsaka, “Microglia-specific localisation of a novel calcium binding protein, Iba1,” Molecular Brain Research, vol. 57, no. 1, pp. 1–9, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Palay and V. Chan-Palay, Cerebellar Cortex: Cytology and Organization, Springer, 1974.
  28. D. Jaarsma, T. J. H. Ruigrok, R. Caffé et al., “Cholinergic innervation and receptors in the cerebellum,” Progress in Brain Research, vol. 114, pp. 67–96, 1997. View at Scopus
  29. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney, Australia, 2nd edition, 1986.
  30. Y. Ikai, M. Takada, Y. Shinonaga, and N. Mizuno, “Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei,” Neuroscience, vol. 51, no. 3, pp. 719–728, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. F. E. Bloom, B. J. Hoffer, and G. R. Siggins, “Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses,” Brain Research, vol. 25, no. 3, pp. 501–521, 1971. View at Scopus
  32. L. Olson and K. Fuxe, “Further mapping out of central noradrenaline neuron systems: projections of the 'subcoeruleus' area,” Brain Research, vol. 43, no. 1, pp. 289–295, 1972. View at Scopus
  33. G. A. Bishop and R. H. Ho, “The distribution and origin of serotonin immunoreactivity in the rat cerebellum,” Brain Research, vol. 331, no. 2, pp. 195–207, 1985. View at Publisher · View at Google Scholar · View at Scopus
  34. N. H. Barmack, R. W. Baughman, and F. P. Eckenstein, “Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry,” Journal of Comparative Neurology, vol. 317, no. 3, pp. 233–249, 1992. View at Scopus
  35. N. H. Barmack, R. W. Baughman, F. P. Eckenstein, and H. Shojaku, “Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers,” Journal of Comparative Neurology, vol. 317, no. 3, pp. 250–270, 1992. View at Scopus
  36. T. N. Luong, H. J. Carlisle, A. Southwell, and P. H. Patterson, “Assessment of motor balance and coordination in mice using the balance beam,” Journal of Visualized Experiments, no. 49, article 2376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. G. A. Metz and I. Q. Whishaw, “The ladder rung walking task: a scoring system and its practical application,” Journal of Visualized Experiments, no. 28, article 1204, 2009. View at Publisher · View at Google Scholar · View at Scopus