About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 807240, 9 pages
http://dx.doi.org/10.1155/2013/807240
Research Article

Internalization of B Cell Receptors in Human EU12 μHC+ Immature B Cells Specifically Alters Downstream Signaling Events

1Department of Pathology and Microbiology, University of Nebraska Medical Center, LTC 11706A, Omaha, NE 68198-7660, USA
2Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
3Department of Internal Medicine, University of Nebraska Medical Center, LTC 11706A, Omaha, NE 68198-7660, USA
4Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, LTC 11706A, Omaha, NE 68198-7660, USA

Received 29 April 2013; Accepted 26 August 2013

Academic Editor: Hirokazu Murakami

Copyright © 2013 Jing Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. D. Burrows and M. D. Cooper, “Regulated expression of cell surface antigens during B cell development,” Seminars in Immunology, vol. 2, no. 3, pp. 189–195, 1990. View at Scopus
  2. L. B. King and J. G. Monroe, “Immunobiology of the immature B cell: plasticity in the B-cell antigen receptor-induced response fine tunes negative selection,” Immunological Reviews, vol. 176, pp. 86–104, 2000. View at Scopus
  3. L. E. Tze, B. R. Schram, K.-P. Lam et al., “Basal immunoglobulin signaling actively maintains developmental stage in immature B cells,” PLoS Biology, vol. 3, no. 3, article e82, 2005. View at Scopus
  4. K. S. Campbell and J. C. Cambier, “B lymphocte antigen receptors (mlg) are non-covalently associated with a disulfide linked, inducibly phosphorylated glycoprotein complex,” The EMBO Journal, vol. 9, no. 2, pp. 441–448, 1990. View at Scopus
  5. M. Reth, “B cell antigen receptors,” Current Opinion in Immunology, vol. 6, pp. 3–8, 1994.
  6. K. Rajewsky, “Clonal selection and learning in the antibody system,” Nature, vol. 381, no. 6585, pp. 751–758, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. L. J. McHeyzer-Williams and M. G. McHeyzer-Williams, “Antigen-specific memory B cell development,” Annual Review of Immunology, vol. 23, pp. 487–513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hertz and D. Nemazee, “BCR ligation induces receptor editing in IgM+IgD- bone marrow B cells in vitro,” Immunity, vol. 6, no. 4, pp. 429–436, 1997. View at Scopus
  9. M. Hertz, V. Kouskoff, T. Nakamura, and D. Nemazee, “V(D)J recombinase induction in splenic B lymphocytes is inhibited by antigen-receptor signalling,” Nature, vol. 394, no. 6690, pp. 292–295, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hertz and D. Nemazee, “Receptor editing and commitment in B lymphocytes,” Current Opinion in Immunology, vol. 10, no. 2, pp. 208–213, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Norvell, L. Mandik, and J. G. Monroe, “Engagement of the antigen-receptor on immature murine B lymphocytes results in death by apoptosis,” Journal of Immunology, vol. 154, no. 9, pp. 4404–4413, 1995. View at Scopus
  12. S. J. Beavitt, K. W. Harder, J. M. Kemp et al., “Lyn-deficient mice develop severe, persistent asthma: lyn is a critical negative regulator of Th2 immunity,” Journal of Immunology, vol. 175, no. 3, pp. 1867–1875, 2005. View at Scopus
  13. K. Sada, T. Takano, S. Yanagi, and H. Yamamura, “Structure and function of Syk protein-tyrosine kinase,” Journal of Biochemistry, vol. 130, no. 2, pp. 177–186, 2001. View at Scopus
  14. Y. Kulathu, E. Hobeika, G. Turchinovich, and M. Reth, “The kinase Syk as an adaptor controlling sustained calcium signalling and B-cell development,” The EMBO Journal, vol. 27, no. 9, pp. 1333–1344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Fu, C. W. Turck, T. Kurosaki, and A. C. Chan, “BLNK: a central linker protein in B cell activation,” Immunity, vol. 9, no. 1, pp. 93–103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Kurosaki and S. Tsukada, “BLNK: connecting Syk and Btk to calcium signals,” Immunity, vol. 12, no. 1, pp. 1–5, 2000. View at Scopus
  17. T. Kurosaki, S. A. Johnson, L. Pao, K. Sada, H. Yamamura, and J. C. Cambier, “Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling,” Journal of Experimental Medicine, vol. 182, no. 6, pp. 1815–1823, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Yanagi, R. Inatome, T. Takano, and H. Yamamura, “Syk expression and novel function in a wide variety of tissues,” Biochemical and Biophysical Research Communications, vol. 288, no. 3, pp. 495–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. H. Wang, Z. Zhang, P. D. Burrows et al., “V(D)J recombinatorial repertoire diversification during intraclonal pro-B to B-cell differentiation,” Blood, vol. 101, no. 3, pp. 1030–1037, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Zhang, M. Zemlin, Y.-H. Wang et al., “Contribution of VH gene replacement to the primary B cell repertoire,” Immunity, vol. 19, no. 1, pp. 21–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Liu, M. D. Lange, S. Y. Hong et al., “Regulation of VH replacement by B cell receptor-mediated signaling in human immature B cells,” Journal of Immunology, vol. 190, no. 11, pp. 5559–5566, 2013.
  22. G. Klein, B. Giovanella, and A. Westman, “An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection,” Intervirology, vol. 5, no. 6, pp. 319–334, 1975. View at Scopus
  23. E. Klein, G. Klein, J. S. Nadkarni, J. J. Nadkarni, H. Wigzell, and P. Clifford, “Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines,” Cancer Research, vol. 28, no. 7, pp. 1300–1310, 1968. View at Scopus
  24. W. G. Kerr, L. M. Hendershot, and P. D. Burrows, “Regulation of IgM and IgD expression in human B-lineage cells,” Journal of Immunology, vol. 146, no. 10, pp. 3314–3321, 1991. View at Scopus
  25. J. E. Stadanlick, M. Kaileh, F. G. Karnell et al., “Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling,” Nature Immunology, vol. 9, no. 12, pp. 1379–1387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Rolli, M. Gallwitz, T. Wossning et al., “Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop,” Molecular Cell, vol. 10, no. 5, pp. 1057–1069, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Norvell, L. Mandik, and J. G. Monroe, “Engagement of the antigen-receptor on immature murine B lymphocytes results in death by apoptosis,” Journal of Immunology, vol. 154, no. 9, pp. 4404–4413, 1995. View at Scopus
  28. T. W. Sproul, S. Malapati, J. Kim, and S. K. Pierce, “Cutting edge: B cell antigen receptor signaling occurs outside lipid rafts in immature B cells,” Journal of Immunology, vol. 165, no. 11, pp. 6020–6023, 2000. View at Scopus
  29. L. Mazari, M. Ouarzane, and M. Zouali, “Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 15, pp. 6317–6322, 2007. View at Publisher · View at Google Scholar · View at Scopus