About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 807863, 12 pages
http://dx.doi.org/10.1155/2013/807863
Research Article

In Vitro Large Scale Production of Human Mature Red Blood Cells from Hematopoietic Stem Cells by Coculturing with Human Fetal Liver Stromal Cells

Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27 Taiping Road, Beijing 100850, China

Received 28 September 2012; Accepted 2 December 2012

Academic Editor: Xuan Jin

Copyright © 2013 Jiafei Xi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Muta, S. B. Krantz, M. C. Bondurant, and A. Wickrema, “Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells,” Journal of Clinical Investigation, vol. 94, no. 1, pp. 34–43, 1994. View at Scopus
  2. H. Dolznig, B. Habermann, K. Stangl et al., “Apoptosis protection by the Epo target Bcl-XL allows factor-independent differentiation of primary erythroblasts,” Current Biology, vol. 12, no. 13, pp. 1076–1085, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. I. Miyagawa, M. Kobayashi, N. Konishi, T. Sato, and K. Ueda, “Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors,” British Journal of Haematology, vol. 109, no. 3, pp. 555–562, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Von Lindern, W. Zauner, G. Mellitzer et al., “The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro,” Blood, vol. 94, no. 2, pp. 550–559, 1999. View at Scopus
  5. H. Dolznig, F. Boulmé, K. Stangl et al., “Establishment of normal, terminally differentiating mouse erythroid progenitors: molecular characterization by cDNA arrays,” The FASEB Journal, vol. 15, no. 8, pp. 1442–1444, 2001. View at Scopus
  6. J. N. Barker and J. E. Wagner, “Umbilical-cord blood transplantation for the treatment of cancer,” Nature Reviews Cancer, vol. 3, no. 7, pp. 526–532, 2003. View at Scopus
  7. J. N. Barker and J. E. Wagner, “Umbilical cord blood transplantation: current state of the art,” Current Opinion in Oncology, vol. 14, no. 2, pp. 160–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Rogers and R. F. Casper, “Stem cells: you can't tell a cell by its cover,” Human Reproduction Update, vol. 9, no. 1, pp. 25–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Wada, T. Suda, Y. Miura, E. Kajii, S. Ikemoto, and Y. Yawata, “Expression of major blood group antigens on human erythroid cells in a two phase liquid culture system,” Blood, vol. 75, no. 2, pp. 505–511, 1990. View at Scopus
  10. E. Fibach and E. A. Rachmilewitz, “The two-step liquid culture: a novel procedure for studying maturation of human normal and pathological erythroid precursors,” Stem Cells, vol. 11, pp. 36–41, 1993. View at Scopus
  11. M. S. Scicchitano, D. C. McFarland, L. A. Tierney, P. K. Narayanan, and L. W. Schwartz, “In vitro expansion of human cord blood CD36+ erythroid progenitors: temporal changes in gene and protein expression,” Experimental Hematology, vol. 31, no. 9, pp. 760–769, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. M. A. Neildez-Nguyen, H. Wajcman, M. C. Marden et al., “Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo,” Nature Biotechnology, vol. 20, no. 5, pp. 467–472, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Giarratana, L. Kobari, H. Lapillonne et al., “Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells,” Nature Biotechnology, vol. 23, no. 1, pp. 69–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Lu, Q. Feng, J. S. Park et al., “Biologic properties and enucleation of red blood cells from human embryonic stem cells,” Blood, vol. 112, no. 12, pp. 4475–4484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Isern, S. T. Fraser, Z. He, and M. H. Baron, “The fetal liver is a niche for maturation of primitive erythroid cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 18, pp. 6662–6667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Koury, S. T. Sawyer, and S. J. Brandt, “New insights into erythropoiesis,” Current Opinion in Hematology, vol. 9, no. 2, pp. 93–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Chasis, “Erythroblastic islands: specialized microenvironmental niches for erythropoiesis,” Current Opinion in Hematology, vol. 13, no. 3, pp. 137–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. T. Spike, B. C. Dibling, and K. F. Macleod, “Hypoxic stress underlies defects in erythroblast islands in the Rb-null mouse,” Blood, vol. 110, no. 6, pp. 2173–2181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. B. T. Spike and K. F. Macleod, “Effects of hypoxia on heterotypic macrophage interactions,” Cell Cycle, vol. 6, no. 21, pp. 2620–2624, 2007. View at Scopus
  20. C. Leberbauer, F. Boulmé, G. Unfried, J. Huber, H. Beug, and E. W. Müllner, “Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors,” Blood, vol. 105, no. 1, pp. 85–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. E. van den Akker, T. J. Satchwell, S. Pellegrin, G. Daniels, and A. M. Toye, “The majority of the in vitro erythroid expansion potential resides in CD34- cells, outweighing the contribution of CD34+ cells and significantly increasing the erythroblast yield from peripheral blood samples,” Haematologica, vol. 95, no. 9, pp. 1594–1598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kennedy, H. Beug, E. F. Wagner, and G. Keller, “Factor-dependent erythroid cell lines derived from mice transplanted with hematopoietic cells expressing the v-src oncogene,” Blood, vol. 79, no. 1, pp. 180–190, 1992. View at Scopus
  23. J. F. Xi, Y. F. Wang, P. Zhang et al., “Establishment of fetal liver stroma cell lines which stably express basic fibroblast growth factor by lentiviral system,” Progress in Biochemistry and Biophysics, vol. 34, no. 2, pp. 207–214, 2007. View at Scopus
  24. C. Cerdan, A. Rouleau, and M. Bhatia, “VEGF-A165 augments erythropoietic development from human embryonic stem cells,” Blood, vol. 103, no. 7, pp. 2504–2512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Panzenböck, P. Bartunek, M. Y. Mapara, and M. Zenke, “Growth and differentiation of human stem cell factor/erythropoietin- dependent erythroid progenitor cells in vitro,” Blood, vol. 92, no. 10, pp. 3658–3668, 1998. View at Scopus
  26. R. Sutherland, D. Delia, C. Schneider, R. Newman, J. Kemshead, and M. Greaves, “Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 7, pp. 4515–4519, 1981. View at Scopus
  27. U. Wojda, P. Noel, and J. L. Miller, “Fetal and adult hemoglobin production during adult erythropoiesis: coordinate expression correlates with cell proliferation,” Blood, vol. 99, no. 8, pp. 3005–3013, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Di Giacomo, A. Matteucci, E. Stellacci et al., “Expression of signal transduction proteins during the differentiation of primary human erythroblasts,” Journal of Cellular Physiology, vol. 202, no. 3, pp. 831–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Migliaccio, R. Di Pietro, V. Di Giacomo et al., “In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients,” Blood Cells, Molecules, and Diseases, vol. 28, no. 2, pp. 169–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. J. H. Kie, Y. J. Jung, S. Y. Woo et al., “Ultrastructural and phenotypic analysis of in vitro erythropoiesis from human cord blood CD34+ cells,” Annals of Hematology, vol. 82, no. 5, pp. 278–283, 2003. View at Scopus
  31. J. Wineman, K. Moore, I. Lemischka, and C. Müller-Sieburg, “Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells,” Blood, vol. 87, no. 10, pp. 4082–4090, 1996. View at Scopus
  32. J. Domen and I. L. Weissman, “Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate,” Molecular Medicine Today, vol. 5, no. 5, pp. 201–208, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Malik, T. C. Fisher, L. L. W. Barsky et al., “An in vitro model of human red blood cell production from hematopoietic progenitor cells,” Blood, vol. 91, no. 8, pp. 2664–2671, 1998. View at Scopus
  34. M. Hanspal and J. S. Hanspal, “The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contact,” Blood, vol. 84, no. 10, pp. 3494–3504, 1994. View at Scopus
  35. L. Douay and G. Andreu, “Ex vivo production of human red blood cells from hematopoietic stem cells: what is the future in transfusion?” Transfusion Medicine Reviews, vol. 21, no. 2, pp. 91–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Ma, D. Wang, S. Hanada et al., “Novel method for efficient production of multipotential hematopoietic progenitors from human embryonic stem cells,” International Journal of Hematology, vol. 85, no. 5, pp. 371–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Ma, Y. Ebihara, K. Umeda et al., “Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13087–13092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Y. Lee, B. S. P. Fong, K. S. Tsang et al., “Fetal stromal niches enhance human embryonic stem cell-derived hematopoietic differentiation and globin switch,” Stem Cells and Development, vol. 20, no. 1, pp. 31–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Chou and H. F. Lodish, “Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 7799–7804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Zhu and S. G. Emerson, “Hematopoietic cytokines, transcription factors and lineage commitment,” Oncogene, vol. 21, no. 21, pp. 3295–3313, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. A. B. Cantor and S. H. Orkin, “Transcriptional regulation of erythropoiesis: an affair involving multiple partners,” Oncogene, vol. 21, no. 21, pp. 3368–3376, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. K. McGrath and J. Palis, “Ontogeny of erythropoiesis in the mammalian embryo,” Current Topics in Developmental Biology, vol. 82, pp. 1–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Palis, “Ontogeny of erythropoiesis,” Current Opinion in Hematology, vol. 15, no. 3, pp. 155–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Borg, P. Papadopoulos, M. Georgitsi et al., “Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin,” Nature genetics, vol. 42, no. 9, pp. 801–805, 2010. View at Publisher · View at Google Scholar · View at Scopus