About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 819252, 9 pages
http://dx.doi.org/10.1155/2013/819252
Research Article

Dissolution of Silver Nanowires and Nanospheres Dictates Their Toxicity to Escherichia coli

1Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
2Estonian Nanotechnology Competence Center, Riia 142, 51014 Tartu, Estonia
3Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia 23, 12618 Tallinn, Estonia
4Department of Chemistry, Tallinn University of Technology, Akadeemia 15, 12618 Tallinn, Estonia

Received 30 April 2013; Revised 1 July 2013; Accepted 8 July 2013

Academic Editor: Muthuswamy Sathishkumar

Copyright © 2013 Meeri Visnapuu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Marambio-Jones and E. M. V. Hoek, “A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1531–1551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. Stensberg, Q. Wei, E. S. McLamore, D. M. Porterfield, A. Wei, and M. S. Sepúlveda, “Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging,” Nanomedicine, vol. 6, no. 5, pp. 879–898, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Li, Y. Wu, and B. S. Ong, “Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics,” Journal of the American Chemical Society, vol. 127, no. 10, pp. 3266–3267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, no. 6, pp. 455–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. T. Dubas and V. Pimpan, “Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection,” Materials Letters, vol. 62, no. 17-18, pp. 2661–2663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. N. A. Melosh, A. Boukai, F. Diana et al., “Ultrahigh-density nanowire lattices and circuits,” Science, vol. 300, no. 5616, pp. 112–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kahru and A. Ivask, “Mapping the dawn of nanoecotoxicological research,” Accounts of Chemical Research, vol. 46, no. 3, pp. 823–833, 2012.
  8. I. Blinova, J. Niskanen, P. Kajankari, et al., “Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus,” Environmentai Science and Pollution Research, vol. 20, no. 5, pp. 3456–3463, 2013.
  9. J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead, “Silver nanoparticles: behaviour and effects in the aquatic environment,” Environment International, vol. 37, no. 2, pp. 517–531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. C. M. Zhao and W. X. Wang, “Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna,” Nanotoxicology, vol. 6, no. 4, pp. 361–370, 2012.
  11. W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, Y.-S. Ou-Yang, and Y.-B. Chen, “Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli,” Applied Microbiology and Biotechnology, vol. 85, no. 4, pp. 1115–1122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. M. Xiu, Q. B. Zhang, H. L. Puppala, et al., “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Letters, vol. 12, no. 8, pp. 4271–4275, 2012.
  15. O. Bondarenko, A. Ivask, A. Käkinen, et al., “Particle-cell contact enhances antibacterial activity of silver nanoparticles,” PLoS ONE, vol. 8, no. 5, Article ID e64060, 2013.
  16. S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 1712–1720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Sadeghi, F. S. Garmaroudi, M. Hashemi et al., “Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates,” Advanced Powder Technology, vol. 23, no. 1, pp. 22–26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. A. Ashkarran, S. Estakhri, M. R. H. Nezhad, et al., “Controlling the geometry of silver nanostructures for biological applications,” Physics Procedia, vol. 40, pp. 76–83, 2013.
  19. S. Liu, L. Wei, L. Hao et al., “Sharper and faster “Nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube,” ACS Nano, vol. 3, no. 12, pp. 3891–3902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. George, S. Lin, Z. Ji, et al., “Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos,” ACS Nano, vol. 6, no. 5, pp. 3745–3759, 2012.
  21. L. C. Stoehr, E. Gonzalez, A. Stampfl et al., “Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells,” Particle and Fibre Toxicology, vol. 8, article 36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Bearden, “X-ray wavelengths,” Reviews of Modern Physics, vol. 39, no. 1, pp. 78–124, 1967. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Chen, X. Qiao, X. Qiu, J. Chen, and R. Jiang, “Large-scale synthesis of silver nanowires via a solvothermal method,” Journal of Materials Science, vol. 22, no. 1, pp. 6–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. D. Evanoff Jr. and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” ChemPhysChem, vol. 6, no. 7, pp. 1221–1231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Yang, J. Bai, Y. Wang, et al., “Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process,” Analyst, vol. 137, pp. 4362–4367, 2012.
  26. R. Ma, C. Levard, S. M. Marinakos et al., “Size-controlled dissolution of organic-coated silver nanoparticles,” Environmental Science and Technology, vol. 46, no. 2, pp. 752–759, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Ivask, T. Rõlova, and A. Kahru, “A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing,” BMC biotechnology, vol. 9, no. 1, p. 41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. E. J. Calabrese, “Hormesis: a revolution in toxicology, risk assessment and medicine,” EMBO Reports, vol. 5, supplement 1, pp. S37–S40, 2004. View at Scopus
  29. K. Hakkila, T. Green, P. Leskinen, A. Ivask, R. Marks, and M. Virta, “Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips,” Journal of Applied Toxicology, vol. 24, no. 5, pp. 333–342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chemistry of Materials, vol. 14, no. 11, pp. 4736–4745, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Kurvet, A. Ivask, O. Bondarenko, M. Sihtmäe, and A. Kahru, “LuxCDABE-transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri,” Sensors, vol. 11, no. 8, pp. 7865–7878, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. M. S. Thorn, S. M. Nelson, and J. Greenman, “Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3217–3224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim, and Y.-S. Yun, “Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity,” Colloids and Surfaces B, vol. 73, no. 2, pp. 332–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Sathishkumar, K. Sneha, and Y.-S. Yun, “Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity,” Bioresource Technology, vol. 101, no. 20, pp. 7958–7965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Bondarenko, K. Juganson, A. Ivask, et al., “Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review,” Archives of Toxicology, vol. 87, no. 7, pp. 1181–1200, 2013.