About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 824563, 10 pages
http://dx.doi.org/10.1155/2013/824563
Review Article

Mechanisms of Omega-3 Polyunsaturated Fatty Acids in Prostate Cancer Prevention

1State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
2Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA

Received 6 March 2013; Revised 2 May 2013; Accepted 8 May 2013

Academic Editor: Gabriella Calviello

Copyright © 2013 Zhennan Gu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. O. Bang, J. Dyerberg, and A. B. Nielsen, “Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos,” The Lancet, vol. 1, no. 7710, pp. 1143–1145, 1971. View at Scopus
  2. J. Dyerberg, H. O. Bang, and N. Hjorne, “Fatty acid composition of the plasma lipids in Greenland Eskimos,” The American Journal of Clinical Nutrition, vol. 28, no. 9, pp. 958–966, 1975. View at Scopus
  3. D. Y. Oh, S. Talukdar, E. J. Bae et al., “GPR120 is an Omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects,” Cell, vol. 142, no. 5, pp. 687–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ariel and C. N. Serhan, “Resolvins and protectins in the termination program of acute inflammation,” Trends in Immunology, vol. 28, no. 4, pp. 176–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Daley, A. Abbott, P. S. Doyle, G. A. Nader, and S. Larson, “A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef,” Nutrition Journal, vol. 9, no. 1, article 10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. T. Bernert Jr. and H. Sprecher, “Studies to determine the role rates of chain elongation and desaturation play in regulating the unsaturated fatty acid composition of rat liver lipids,” Biochimica et Biophysica Acta, vol. 398, no. 3, pp. 354–363, 1975. View at Scopus
  7. I. M. Berquin, I. J. Edwards, S. J. Kridel, and Y. Q. Chen, “Polyunsaturated fatty acid metabolism in prostate cancer,” Cancer and Metastasis Reviews, vol. 30, no. 3-4, pp. 295–309, 2011.
  8. J. V. Swinnen, K. Brusselmans, and G. Verhoeven, “Increased lipogenesis in cancer cells: new players, novel targets,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 9, no. 4, pp. 358–365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. P. Kuhajda, “Fatty acid synthase and cancer: new application of an old pathway,” Cancer Research, vol. 66, no. 12, pp. 5977–5980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Menendez and R. Lupu, “Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis,” Nature Reviews Cancer, vol. 7, no. 10, pp. 763–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Suburu and Y. Q. Chen, “Lipids and prostate cancer,” Prostaglandins and Other Lipid Mediators, vol. 98, pp. 1–10, 2012.
  12. G. C. Burdge and P. C. Calder, “Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults,” Reproduction Nutrition Development, vol. 45, no. 5, pp. 581–597, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Williams and G. Burdge, “Long-chain n-3 PUFA: plant v. marine sources,” Proceedings of the Nutrition Society, vol. 65, no. 1, pp. 42–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Pawlosky, J. R. Hibbeln, J. A. Novotny, and N. Salem, “Physiological compartmental analysis of α-linolenic acid metabolism in adult humans,” Journal of Lipid Research, vol. 42, no. 8, pp. 1257–1265, 2001. View at Scopus
  15. A. P. Simopoulos, “Evolutionary aspects of omega-3 fatty acids in the food supply,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 60, no. 5-6, pp. 421–429, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. A. P. Simopoulos, “The importance of the ratio of omega-6/omega-3 essential fatty acids,” Biomedicine and Pharmacotherapy, vol. 56, no. 8, pp. 365–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. I. M. Berquin, Y. Min, R. Wu et al., “Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids,” Journal of Clinical Investigation, vol. 117, no. 7, pp. 1866–1875, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Calviello, F. Resci, S. Serini et al., “Docosahexaenoic acid induces proteasome-dependent degradation of β-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2,” Carcinogenesis, vol. 28, no. 6, pp. 1202–1209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Sun, I. M. Berquin, R. T. Owens, J. T. O'Flaherty, and I. J. Edwards, “Peroxisome proliferator-activated receptor γ-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells,” Cancer Research, vol. 68, no. 8, pp. 2912–2919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. I. M. Berquin, I. J. Edwards, and Y. Q. Chen, “Multi-targeted therapy of cancer by omega-3 fatty acids,” Cancer Letters, vol. 269, no. 2, pp. 363–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Q. Chen, I. J. Edwards, S. J. Kridel, T. Thornburg, and I. M. Berquin, “Dietary fat-gene interactions in cancer,” Cancer Metastasis Reviews, vol. 26, pp. 535–551, 2007.
  22. S. Wang, J. Wu, J. Suburu, Z. Gu, J. Cai, et al., “Effect of dietary polyunsaturated fatty acids on castration-resistant Pten-null prostate cancer,” Carcinogenesis, vol. 33, pp. 404–412, 2012.
  23. K. K. Carroll, “Dietary fat and cancer: specific action or caloric effect?” Journal of Nutrition, vol. 116, no. 6, pp. 1130–1132, 1986. View at Scopus
  24. M. Gerber, “Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies,” British Journal of Nutrition, vol. 107, Supplement 2, pp. 228–239, 2012.
  25. P. D. Terry, T. E. Rohan, and A. Wolk, “Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence,” The American Journal of Clinical Nutrition, vol. 77, no. 3, pp. 532–543, 2003. View at Scopus
  26. C. H. MacLean, S. J. Newberry, W. A. Mojica et al., “Effects of omega-3 fatty acids on cancer risk: a systematic review,” Journal of the American Medical Association, vol. 295, no. 4, pp. 403–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Q. Chen, I. M. Berquin, L. W. Daniel et al., “Omega-3 fatty acids and cancer risk,” Journal of the American Medical Association, vol. 296, no. 3, pp. 278–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. C. Schumacher, B. Laven, F. Petersson et al., “A comparative study of tissue ω-6 and ω-3 polyunsaturated fatty acids (PUFA) in benign and malignant pathologic stage pT2a radical prostatectomy specimens,” Urologic Oncology, vol. 31, no. 3, pp. 318–324, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. C. D. Williams, B. M. Whitley, C. Hoyo, D. J. Grant, J. D. Iraggi, et al., “A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer,” Nutrition Research, vol. 31, no. 1, pp. 1–8, 2011.
  30. M. D. Brown, C. Hart, E. Gazi, P. Gardner, N. Lockyer, and N. Clarke, “Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer,” British Journal of Cancer, vol. 102, no. 2, pp. 403–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. R. Ritch, R. L. Wan, L. B. Stephens et al., “Dietary fatty acids correlate with prostate cancer biopsy grade and volume in Jamaican men,” Journal of Urology, vol. 177, no. 1, pp. 97–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Sawada, M. Inoue, M. Iwasaki, S. Sasazuki, T. Shimazu, et al., “Consumption of n-3 fatty acids and fish reduces risk of hepatocellular carcinoma,” Gastroenterology, vol. 142, pp. 1468–1475, 2012.
  33. S. Sasazuki, M. Inoue, M. Iwasaki et al., “Intake of n-3 and n-6 polyunsaturated fatty acids and development of colorectal cancer by subsite: Japan Public Health Center-based prospective study,” International Journal of Cancer, vol. 129, no. 7, pp. 1718–1729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. E. Chavarro, M. J. Stampfer, H. Li, H. Campos, T. Kurth, and J. Ma, “A prospective study of polyunsaturated fatty acid levels in blood and prostate cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 7, pp. 1364–1370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. K. M. Szymanski, D. C. Wheeler, and L. A. Mucci, “Fish consumption and prostate cancer risk: a review and meta-analysis,” The American Journal of Clinical Nutrition, vol. 92, no. 5, pp. 1223–1233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Kobayashi, R. J. Barnard, S. M. Henning et al., “Effect of altering dietary ω-6/ω-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E 2,” Clinical Cancer Research, vol. 12, no. 15, pp. 4662–4670, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. D. Brown, C. A. Hart, E. Gazi, S. Bagley, and N. W. Clarke, “Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs,” British Journal of Cancer, vol. 94, no. 6, pp. 842–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. C. Chabot, J. D. Schmitt, B. C. Bullock, and R. L. Wykle, “Reacylation of platelet activating factor with eicosapentaenoic acid in fish-oil-enriched monkey neutrophils,” Biochimica et Biophysica Acta, vol. 922, no. 2, pp. 214–220, 1987. View at Scopus
  39. M. Picq, P. Chen, M. Perez, M. Michaud, E. Vericel, et al., “DHA metabolism: targeting the brain and lipoxygenation,” Molecular Neurobiology, vol. 42, pp. 48–51, 2010.
  40. Z. Gu, J. Wu, S. Wang, et al., “Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells,” Carcinogenesis, 2013. View at Publisher · View at Google Scholar
  41. S. R. Wassall and W. Stillwell, “Docosahexaenoic acid domains: the ultimate non-raft membrane domain,” Chemistry and Physics of Lipids, vol. 153, no. 1, pp. 57–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. N. V. Eldho, S. E. Feller, S. Tristram-Nagle, I. V. Polozov, and K. Gawrisch, “Polyunsaturated docosahexaenoic vs docosapentaenoic acid - Differences in lipid matrix properties from the loss of one double bond,” Journal of the American Chemical Society, vol. 125, no. 21, pp. 6409–6421, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. D. C. Mitchell, S. L. Niu, and B. J. Litman, “Quantifying the differential effects of DHA and DPA on the early events in visual signal transduction,” Chemistry and Physics of Lipids, vol. 165, pp. 393–400, 2012.
  44. H. F. Turk, R. Barhoumi, and R. S. Chapkin, “Alteration of EGFR spatiotemporal dynamics suppresses signal transduction,” PLoS One, vol. 7, no. 6, Article ID e39682, 2012. View at Publisher · View at Google Scholar
  45. S. R. Datta, H. Dudek, T. Xu et al., “Akt phosphorylation of BAD couples survival signals to the cell- intrinsic death machinery,” Cell, vol. 91, no. 2, pp. 231–241, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Maehama and J. E. Dixon, “The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate,” Journal of Biological Chemistry, vol. 273, no. 22, pp. 13375–13378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Engelman, J. Luo, and L. C. Cantley, “The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism,” Nature Reviews Genetics, vol. 7, no. 8, pp. 606–619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. T. F. Franke, “PI3K/Akt: getting it right matters,” Oncogene, vol. 27, no. 50, pp. 6473–6488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Hu, H. Sun, R. T. Owens et al., “Syndecan-1-dependent suppression of PDK1/Akt/Bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer,” Neoplasia, vol. 12, no. 10, pp. 826–836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. P. D. Schley, H. B. Jijon, L. E. Robinson, and C. J. Field, “Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells,” Breast Cancer Research and Treatment, vol. 92, no. 2, pp. 187–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. J. L. D. Toit-Kohn, L. Louw, and A. M. Engelbrecht, “Docosahexaenoic acid induces apoptosis in colorectal carcinoma cells by modulating the PI3 kinase and p38 MAPK pathways,” Journal of Nutritional Biochemistry, vol. 20, no. 2, pp. 106–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. R. N. DuBois, S. B. Abramson, L. Crofford et al., “Cyclooxygenase in biology and disease,” FASEB Journal, vol. 12, no. 12, pp. 1063–1073, 1998. View at Scopus
  53. G. P. Pidgeon, J. Lysaght, S. Krishnamoorthy et al., “Lipoxygenase metabolism: roles in tumor progression and survival,” Cancer and Metastasis Reviews, vol. 26, no. 3-4, pp. 503–524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. N. Ye, W. K. K. Wu, V. Y. Shin, I. C. Bruce, B. C. Y. Wong, and C. H. Cho, “Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke,” Carcinogenesis, vol. 26, no. 4, pp. 827–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. B. K. Sharma, P. Pilania, and P. Singh, “Modeling of cyclooxygenase-2 and 5-lipooxygenase inhibitory activity of apoptosis-inducing agents potentially useful in prostate cancer chemotherapy: derivatives of diarylpyrazole,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, no. 2, pp. 607–615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Diederich, C. Sobolewski, C. Cerella, M. Dicato, and L. Ghibelli, “The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies,” International Journal of Cell Biology, Article ID 215158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. T. Wang, K. V. Honn, and D. Nie, “Cyclooxygenases, prostanoids, and tumor progression,” Cancer and Metastasis Reviews, vol. 26, no. 3-4, pp. 525–534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. D. G. Menter, R. L. Schilsky, and R. N. DuBois, “Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward,” Clinical Cancer Research, vol. 16, no. 5, pp. 1384–1390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. C. Reese, V. Fradet, and J. S. Witte, “ω-3 Fatty acids, genetic variants in COX-2 and prostate cancer,” Journal of Nutrigenetics and Nutrigenomics, vol. 2, no. 3, pp. 149–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. H. O. Bang, J. Dyerberg, and N. Hjorne, “The composition of food consumed by Greenland Eskimos,” Acta Medica Scandinavica, vol. 200, no. 1-2, pp. 69–73, 1976. View at Scopus
  61. J. Dyerberg, H. O. Bang, E. Stoffersen, S. Moncada, and J. R. Vane, “Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis?” The Lancet, vol. 2, no. 8081, pp. 117–119, 1978. View at Scopus
  62. C. N. Serhan, C. B. Clish, J. Brannon, S. P. Colgan, N. Chiang, and K. Gronert, “Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing,” Journal of Experimental Medicine, vol. 192, no. 8, pp. 1197–1204, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Hasturk, A. Kantarci, T. Ohira et al., “RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis,” FASEB Journal, vol. 20, no. 2, pp. 401–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. K. M. Connor, J. P. Sangiovanni, C. Lofqvist et al., “Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis,” Nature Medicine, vol. 13, no. 7, pp. 868–873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Ogawa, D. Urabe, Y. Yokokura, H. Arai, M. Arita, and M. Inoue, “Total synthesis and bioactivity of resolvin E2,” Organic Letters, vol. 11, no. 16, pp. 3602–3605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. K. H. Weylandt, C. Y. Chiu, B. Gomolka, S. F. Waechter, and B. Wiedenmann, “Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation,” Prostaglandins and Other Lipid Mediators, vol. 97, pp. 73–82, 2012.
  67. Y. P. Sun, S. F. Oh, J. Uddin et al., “Resolvin D1 and its aspirin-triggered 17R epimer: stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation,” Journal of Biological Chemistry, vol. 282, no. 13, pp. 9323–9334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. C. K. Park, Z. Z. Xu, T. Liu, N. Lu, C. N. Serhan, et al., “Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1,” Journal of Neuroscience, vol. 31, pp. 18433–18438, 2011.
  69. Y. Zhao, F. Calon, C. Julien et al., “Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer's disease models,” PLoS ONE, vol. 6, no. 1, Article ID e15816, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Tazoe, Y. Otomo, I. Kaji, R. Tanaka, S. I. Karaki, and A. Kuwahara, “Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions,” Journal of Physiology and Pharmacology, vol. 59, supplement 2, pp. 251–262, 2008. View at Scopus
  71. J. Wang, X. Wu, N. Simonavicius, H. Tian, and L. Ling, “Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 34457–34464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Itoh, Y. Kawamata, M. Harada et al., “Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40,” Nature, vol. 422, no. 6928, pp. 173–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Hirasawa, K. Tsumaya, T. Awaji et al., “Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120,” Nature Medicine, vol. 11, no. 1, pp. 90–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Suzuki, S. Takaishi, M. Nagasaki, Y. Onozawa, I. Iino, et al., “Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor,” Journal of Biological Chemistry, vol. 288, pp. 10684–10691, 2013.
  75. C. P. Briscoe, M. Tadayyon, J. L. Andrews et al., “The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids,” Journal of Biological Chemistry, vol. 278, no. 13, pp. 11303–11311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Hardy, G. G. St-Onge, E. Joly, Y. Langelier, and M. Prentki, “Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13285–13291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Alquier, M. L. Peyot, M. G. Latour et al., “Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets,” Diabetes, vol. 58, no. 11, pp. 2607–2615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Nakamoto, T. Nishinaka, K. Matsumoto, F. Kasuya, M. Mankura, et al., “Involvement of the long-chain fatty acid receptor GPR40 as a novel pain regulatory system,” Brain Research, vol. 1432, pp. 74–83, 2012.
  79. D. Ma, M. Zhang, C. P. Larsen et al., “DHA promotes the neuronal differentiation of rat neural stem cells transfected with GPR40 gene,” Brain Research, vol. 1330, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Ichimura, A. Hirasawa, O. Poulain-Godefroy, A. Bonnefond, T. Hara, et al., “Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human,” Nature, vol. 483, pp. 350–354, 2012.
  81. D. Y. Oh and J. M. Olefsky, “Omega 3 fatty acids and GPR120,” Cell Metabolism, vol. 15, pp. 564–565, 2012.
  82. T. Kawai and S. Akira, “TLR signaling,” Cell Death and Differentiation, vol. 13, no. 5, pp. 816–825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. L. A. Ridnour, R. Y. Cheng, C. H. Switzer, J. L. Heinecke, S. Ambs, et al., “Molecular Pathways: toll-like receptors in the tumor microenvironment: poor prognosis or new therapeutic opportunity,” Clinical Cancer Research, vol. 19, no. 6, pp. 1340–1346, 2012. View at Publisher · View at Google Scholar
  84. J. Krishnan, G. Lee, and S. Choi, “Drugs targeting toll-like receptors,” Archives of Pharmacal Research, vol. 32, no. 11, pp. 1485–1502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Paone, D. Starace, R. Galli et al., “Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-α-dependent mechanism,” Carcinogenesis, vol. 29, no. 7, pp. 1334–1342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. S. L. Zheng, K. Augustsson-Bälter, B. Chang et al., “Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the cancer prostate in Sweden study,” Cancer Research, vol. 64, no. 8, pp. 2918–2922, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. M. R. Väisänen, T. Väisänen, A. Jukkola-Vuorinen et al., “Expression of toll-like receptor-9 is increased in poorly differentiated prostate tumors,” Prostate, vol. 70, no. 8, pp. 817–824, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Panigrahy, A. Kaipainen, E. R. Greene, and S. Huang, “Cytochrome P450-derived eicosanoids: the neglected pathway in cancer,” Cancer Metastasis Reviews, vol. 29, no. 4, pp. 723–735, 2010. View at Scopus
  89. Z. Wang, D. Liu, F. Wang, S. Liu, S. Zhao, et al., “Saturated fatty acids activate microglia via Toll-like receptor 4/NF-kappaB signalling,” British Journal of Nutrition, vol. 107, pp. 229–241, 2012.
  90. G. T. Robbins and D. Nie, “PPAR gamma, bioactive lipids, and cancer progression,” Frontiers in Bioscience, vol. 17, pp. 1816–1834, 2012.
  91. H. J. Murff, X. O. Shu, H. Li et al., “Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: a prospective cohort study,” International Journal of Cancer, vol. 128, no. 6, pp. 1434–1441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Sun, Y. Hu, Z. Gu, R. T. Owens, Y. Q. Chen, et al., “Omega-3 fatty acids induce apoptosis in human breast cancer cells and mouse mammary tissue through syndecan-1 inhibition of the MEK-Erk pathway,” Carcinogenesis, vol. 32, pp. 1518–1524, 2011.
  93. I. J. Edwards, I. M. Berquin, H. Sun et al., “Differential effects of delivery of omega-3 fatty acids to human cancer cells by low-density lipoproteins versus albumin,” Clinical Cancer Research, vol. 10, no. 24, pp. 8275–8283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Sun, I. M. Berquin, and I. J. Edwards, “Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells,” Cancer Research, vol. 65, no. 10, pp. 4442–4447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Sun, Y. Hu, Z. Gu et al., “Endogenous synthesis of n-3 polyunsaturated fatty acids in Fat-1 mice is associated with increased mammary gland and liver Syndecan-1,” PLoS ONE, vol. 6, no. 5, Article ID e20502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. H. Teng, R. S. Aquino, and P. W. Park, “Molecular functions of syndecan-1 in disease,” Matrix Biology, vol. 31, pp. 3–16, 2012.
  97. T. Ishikawa and R. H. Kramer, “Sdc1 negatively modulates carcinoma cell motility and invasion,” Experimental Cell Research, vol. 316, no. 6, pp. 951–965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Kiviniemi, M. Kallajoki, I. Kujala et al., “Altered expression of syndecan-1 in prostate cancer,” APMIS, vol. 112, no. 2, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Chen, B. Adenekan, L. Chen et al., “Syndecan-1 expression in locally invasive and metastatic prostate cancer,” Urology, vol. 63, no. 2, pp. 402–407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Zellweger, C. Ninck, M. Mirlacher et al., “Tissue microarray analysis reveals prognostic significance of syndecan-I expression in prostate cancer,” Prostate, vol. 55, no. 1, pp. 20–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. I. J. Edwards, H. Sun, Y. Hu et al., “In vivo and in vitro regulation of syndecan 1 in prostate cells by n-3 polyunsaturated fatty acids,” Journal of Biological Chemistry, vol. 283, no. 26, pp. 18441–18449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. P. A. Corsetto, G. Montorfano, S. Zava, I. E. Jovenitti, A. Cremona, and A. M. Rizzo, “Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane,” Lipids in Health and Disease, vol. 10, article 73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. J. B. Ewaschuk, M. Newell, and C. J. Field, “Docosahexanoic acid improves chemotherapy efficacy by inducing CD95 translocation to lipid rafts in ER(-) breast cancer cells,” Lipids, vol. 47, pp. 1019–1030, 2012.
  104. J. Y. Lee, L. Zhao, and D. H. Hwang, “Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids,” Nutrition Reviews, vol. 68, no. 1, pp. 38–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Mitsuishi, H. Motohashi, and M. Yamamoto, “The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism,” Frontiers in Oncology, vol. 2, article 200, 2012. View at Publisher · View at Google Scholar
  106. H. Wang, T. O. Khor, C. L. L. Saw et al., “Role of Nrf2 in suppressing LPS-induced inflammation in mouse peritoneal macrophages by polyunsaturated fatty acids docosahexaenoic acid and eicosapentaenoic acid,” Molecular Pharmaceutics, vol. 7, no. 6, pp. 2185–2193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Zhang, A. Singh, S. Yegnasubramanian et al., “Loss of kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth,” Molecular Cancer Therapeutics, vol. 9, no. 2, pp. 336–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Singh, S. Boldin-Adamsky, R. K. Thimmulappa et al., “RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy,” Cancer Research, vol. 68, no. 19, pp. 7975–7984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. L. Gao, J. Wang, K. R. Sekhar et al., “Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3,” Journal of Biological Chemistry, vol. 282, no. 4, pp. 2529–2537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Ishikado, Y. Nishio, K. Morino et al., “Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 402, no. 1, pp. 99–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. H. Wang, T. O. Khor, C. L. L. Saw et al., “Role of Nrf2 in suppressing LPS-induced inflammation in mouse peritoneal macrophages by polyunsaturated fatty acids docosahexaenoic acid and eicosapentaenoic acid,” Molecular Pharmaceutics, vol. 7, no. 6, pp. 2185–2193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. M. J. Magbanua, R. Roy, E. V. Sosa, V. Weinberg, S. Federman, et al., “Gene expression and biological pathways in tissue of men with prostate cancer in a randomized clinical trial of lycopene and fish oil supplementation,” PLoS One, vol. 6, no. 9, Article ID e24004, 2011. View at Publisher · View at Google Scholar
  113. B. Minke, “TRP channels and Ca2+ signaling,” Cell Calcium, vol. 40, no. 3, pp. 261–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. J. A. Matta, R. L. Miyares, and G. P. Ahern, “TRPV1 is a novel target for omega-3 polyunsaturated fatty acids,” Journal of Physiology, vol. 578, no. 2, pp. 397–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Parnas, M. Peters, and B. Minke, “Linoleic acid inhibits TRP channels with intrinsic voltage sensitivity: implications on the mechanism of linoleic acid action,” Channels, vol. 3, no. 3, pp. 164–166, 2009. View at Scopus
  116. M. Leonelli, M. F. Graciano, and L. R. Britto, “TRP channels, omega-3 fatty acids, and oxidative stress in neurodegeneration: from the cell membrane to intracellular cross-links,” Brazilian Journal of Medical and Biological Research, vol. 44, pp. 1088–1096, 2011.
  117. S. Ye, L. Tan, J. Ma, Q. Shi, and J. Li, “Polyunsaturated docosahexaenoic acid suppresses oxidative stress induced endothelial cell calcium influx by altering lipid composition in membrane caveolar rafts,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 83, no. 1, pp. 37–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Flourakis and N. Prevarskaya, “Insights into Ca2+ homeostasis of advanced prostate cancer cells,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 1105–1109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Sun, S. Selvaraj, A. Varma, S. Derry, A. E. Sahmoun, et al., “Increase in serum Ca2+/Mg2+ ratio promotes proliferation of prostate cancer cells by activating TRPM7 channels,” Journal of Biological Chemistry, vol. 288, pp. 255–263, 2013.