About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 831709, 11 pages
http://dx.doi.org/10.1155/2013/831709
Research Article

The Cytotoxic Effect of Magainin II on the MDA-MB-231 and M14K Tumour Cell Lines

1University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania
2Laboratory of Molecular Biology, Regional Institute of Oncology Iasi, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania
3Department of Cell and Molecular Biology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania
4Department of Pathophysiology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania

Received 26 May 2013; Revised 2 August 2013; Accepted 30 August 2013

Academic Editor: Paul M. Tulkens

Copyright © 2013 Radu Anghel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Vrdoljak, M. Z. Wojtukiewicz, T. Pienkowski et al., “Cancer epidemiology in Central and South Eastern European countries,” Croatian Medical Journal, vol. 52, no. 4, pp. 478–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. K. V. R. Reddy, R. D. Yedery, and C. Aranha, “Antimicrobial peptides: premises and promises,” International Journal of Antimicrobial Agents, vol. 24, no. 6, pp. 536–547, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Dennison, M. Whittaker, F. Harris, and D. A. Phoenix, “Anticancer α-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes,” Current Protein and Peptide Science, vol. 7, no. 6, pp. 487–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1778, no. 2, pp. 357–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. L. Hilchie, C. D. Doucette, D. M. Pinto, A. Patrzykat, S. Douglas, and D. W. Hoskin, “Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts,” Breast Cancer Research, vol. 13, no. 5, article R102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Mor, “Peptide-based antibiotics: a potential answer to raging antimicrobial resistance,” Drug Development Research, vol. 50, no. 3-4, pp. 440–447, 2000. View at Scopus
  7. O. Cirioni, A. Giacometti, R. Ghiselli et al., “Single-dose intraperitoneal magainins improve survival in a gram-negative-pathogen septic shock rat model,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 1, pp. 101–104, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Koczulla and R. Bals, “Antimicrobial peptides: current status and therapeutic potential,” Drugs, vol. 63, no. 4, pp. 389–406, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Rosenfeld and Y. Shai, “Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1513–1522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Sato and J. B. Feix, “Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1245–1256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Pascariu, A. N. Anghelache, D. Constantinescu, D. Jitaru, E. Carasevici, and T. Luchian, “The evaluation of biological effect of cytotoxic peptides on tumor cell lines,” Digest Journal of Nanomaterials and Biostructures, vol. 7, no. 1, pp. 79–84, 2012. View at Scopus
  12. J. Lehmann, M. Retz, S. S. Sidhu et al., “Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines,” European Urology, vol. 50, no. 1, pp. 141–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Cruciani, J. L. Barker, M. Zasloff, H. C. Chen, and O. Colamonici, “Magainins as paradigm for the mode of action of pore forming polypeptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, pp. 3792–3796, 1991. View at Publisher · View at Google Scholar
  14. C. Li and T. Salditt, “Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity,” Biophysical Journal, vol. 91, no. 9, pp. 3285–3300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Matsuzaki, “Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 1–10, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. J. I. Kourie and A. A. Shorthouse, “Properties of cytotoxic peptide-formed ion channels,” American Journal of Physiology: Cell Physiology, vol. 278, no. 6, pp. C1063–C1087, 2000. View at Scopus
  17. T. Omori, K. Saijo, M. Kato et al., “Validation study on five cytotoxicity assays by JSAAE -VII. Details of the MTT assay,” Alternatives to Animal Testing EXperiment, vol. 5, no. 1-2, pp. 39–58, 1998.
  18. 2010, http://www.cancer.gov.
  19. M. Lacroix and G. Leclercq, “Relevance of breast cancer cell lines as models for breast tumours: an update,” Breast Cancer Research and Treatment, vol. 83, no. 3, pp. 249–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Baas, “Chemotherapy for malignant mesothelioma: from doxorubicin to vinorelbine,” Seminars in Oncology, vol. 29, no. 1, pp. 62–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. L. Moskal, J. D. Urschel, T. M. Anderson, J. G. Antkowiak, and H. Takita, “Malignant pleural mesothelioma: a problematic review,” Surgical Oncology, vol. 7, no. 1-2, pp. 5–12, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. S. K. Kandasamy and R. G. Larson, “Binding and insertion of α-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations,” Chemistry and Physics of Lipids, vol. 132, no. 1, pp. 113–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Lundbæk, R. E. Koeppe II, and O. S. Andersen, “Amphiphile regulation of ion channel function by changes in the bilayer spring constant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 35, pp. 15427–15430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Matsuzaki, K.-I. Sugishita, M. Harada, N. Fujii, and K. Miyajima, “Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria,” Biochimica et Biophysica Acta, vol. 1327, no. 1, pp. 119–130, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. S. B. Coffelt and A. B. Scandurro, “Tumors sound the alarmin(s),” Cancer Research, vol. 68, no. 16, pp. 6482–6485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C. I. Chamorro, G. Weber, A. Grönberg, A. Pivarcsi, and M. Ståhle, “The human antimicrobial peptide ll-37 suppresses apoptosis in keratinocytes,” Journal of Investigative Dermatology, vol. 129, pp. 937–944, 2009. View at Publisher · View at Google Scholar
  27. L. Yang, L. R. Arias, T. S. Lane, M. D. Yancey, and J. Mamouni, “Real-time electrical impedance-based measurement to distinguish oral cancer cells and non-cancer oral epithelial cells,” Analytical and Bioanalytical Chemistry, vol. 399, no. 5, pp. 1823–1833, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Kuk, J. R. Brender, M. F. M. Sciacca, J. Krishnamoorthy, C. Yu, and A. Ramamoorthy, “Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78),” Biochemistry, vol. 52, no. 19, pp. 3254–3263.
  29. V. Dhople, A. Krukemeyer, and A. Ramamoorthy, “The human beta-defensin-3, an antibacterial peptide with multiple biological functions,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1499–1512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Ramamoorthy, “Beyond NMR spectra of antimicrobial peptides: dynamical images at atomic resolution and functional insights,” Solid State Nuclear Magnetic Resonance, vol. 35, no. 4, pp. 201–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Thennarasu, R. Huang, D.-K. Lee et al., “Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367,” Biochemistry, vol. 49, no. 50, pp. 10595–10605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Ramamoorthy, S. Thennarasu, D.-K. Lee, A. Tan, and L. Maloy, “Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin,” Biophysical Journal, vol. 91, no. 1, pp. 206–216, 2006. View at Publisher · View at Google Scholar · View at Scopus