About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 832790, 9 pages
http://dx.doi.org/10.1155/2013/832790
Research Article

Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA

Received 24 July 2013; Accepted 28 November 2013

Academic Editor: Michael Gelinsky

Copyright © 2013 Xiaohua Yu and Mei Wei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Y. Liu, P. K. Chu, and C. K. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering R, vol. 47, no. 3-4, pp. 49–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Narayanan, S. K. Seshadri, T. Y. Kwon, and K. H. Kim, “Calcium phosphate-based coatings on titanium and its alloys,” Journal of Biomedical Materials Research B, vol. 85, no. 1, pp. 279–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants—a review,” Progress in Materials Science, vol. 54, no. 3, pp. 397–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration,” Dental Materials, vol. 23, no. 7, pp. 844–854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Yu, H. Qu, D. A. Knecht, and M. Wei, “Incorporation of bovine serum albumin into biomimetic coatings on titanium with high loading efficacy and its release behavior,” Journal of Materials Science: Materials in Medicine, vol. 20, no. 1, pp. 287–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Barrère, P. Layrolle, C. A. van Blitterswijk, and K. de Groot, “Biomimetic calcium phosphate coatings on Ti6Al4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3,” Bone, vol. 25, no. 1, supplement 1, pp. 107S–111S, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Habibovic, F. Barrère, C. A. van Blitterswijk, K. de Groot, and P. Layrolle, “Biomimetic hydroxyapatite coating on metal implants,” Journal of the American Ceramic Society, vol. 85, no. 3, pp. 517–522, 2002. View at Scopus
  8. X. Yu, Z. Xia, L. Wang et al., “Controlling the structural organization of regenerated bone by tailoring tissue engineering scaffold architecture,” Journal of Materials Chemistry, vol. 22, no. 19, pp. 9721–9730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Weng, M. Wang, and J. Chen, “Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds,” Biomaterials, vol. 23, no. 13, pp. 2623–2629, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. C. Wolke, K. de Groot, and J. A. Jansen, “In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings,” Journal of Biomedical Materials Research, vol. 39, pp. 524–530, 1998.
  11. E. Milella, F. Cosentino, A. Licciulli, and C. Massaro, “Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process,” Biomaterials, vol. 22, no. 11, pp. 1425–1431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kokubo, S. Ito, Z. T. Huang et al., “Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W,” Journal of Biomedical Materials Research, vol. 24, no. 3, pp. 331–343, 1990. View at Scopus
  13. F. Barrere, C. A. Van Blitterswijk, K. De Groot, and P. Layrolle, “Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution,” Biomaterials, vol. 23, no. 9, pp. 1921–1930, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. H. B. Wen, J. R. de Wijn, C. A. van Blitterswijk, and K. de Groot, “Incorporation of bovine serum albumin in calcium phosphate coating on titanium,” Journal of Biomedical Materials Research, vol. 46, pp. 245–252, 1999.
  15. Z. Xia, X. Yu, and M. Wei, “Biomimetic collagen/apatite coating formation on Ti6Al4V substrates,” Journal of Biomedical Materials Research B, vol. 100, no. 3, pp. 871–881, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. W.-Q. Yan, T. Nakamura, K. Kawanabe, S. Nishigochi, M. Oka, and T. Kokubo, “Apatite layer-coated titanium for use as bone bonding implants,” Biomaterials, vol. 18, no. 17, pp. 1185–1190, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Jordan, S. Brownstein, S. Gilberg, D. Coupal, S. Kim, and L. Mawn, “Hydroxyapatite and calcium phosphate coatings on aluminium oxide orbital implants,” Canadian Journal of Ophthalmology, vol. 37, no. 1, pp. 7–13, 2002. View at Scopus
  18. P. Li, “Biomimetic nano-apatite coating capable of promoting bone ingrowth,” Journal of Biomedical Materials Research A, vol. 66, no. 1, pp. 79–85, 2003. View at Scopus
  19. M. Nagano, T. Kitsugi, T. Nakamura, T. Kokubo, and M. Tanahashi, “Bone bonding ability of an apatite-coated polymer produced using a biomimetic method: a mechanical and histological study in vivo,” Journal of Biomedical Materials Research A, vol. 31, pp. 487–494, 1996.
  20. X. Yu and M. Wei, “Preparation and evaluation of parathyroid hormone incorporated CaP coating via a biomimetic method,” Journal of Biomedical Materials Research B, vol. 97, pp. 345–354, 2011.
  21. Z. Xia, X. Yu, X. Jiang, H. D. Brody, D. W. Rowe, and M. Wei, “Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering,” Acta Biomaterialia, vol. 9, pp. 7308–7319, 2013.
  22. A. Okumura, M. Goto, T. Goto et al., “Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2),” Biomaterials, vol. 22, no. 16, pp. 2263–2271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Shu, R. McMullen, M. J. Baumann, and L. R. McCabe, “Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1196–1204, 2003. View at Scopus
  24. X. Yu, L. Wang, Z. Xia, et al., “Modulation of host osseointegration during bone regeneration by controlling exogenous stem cell differentiation using a material approach,” Biomaterials Science, 2014. View at Publisher · View at Google Scholar
  25. X. Yu, L. Wang, F. Peng et al., “The effect of fresh bone marrow cells on reconstruction of mouse calvarial defect combined with calvarial osteoprogenitor cells and collagen-apatite scaffold,” Journal of Tissue Engineering and Regenerative Medicine, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. R. O. C. Oreffo, F. C. M. Driessens, J. A. Planell, and J. T. Triffitt, “Effects of novel calcium phosphate cements on human bone marrow fibroblastic cells,” Tissue Engineering, vol. 4, no. 3, pp. 293–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. Y.-F. Chou, W. Huang, J. C. Y. Dunn, T. A. Miller, and B. M. Wu, “The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression,” Biomaterials, vol. 26, no. 3, pp. 285–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y.-J. Lee, J. S. Ko, and H.-M. Kim, “The role of cell signaling defects on the proliferation of osteoblasts on the calcium phosphate apatite thin film,” Biomaterials, vol. 27, no. 20, pp. 3738–3744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. W. L. Murphy, S. Hsiong, T. P. Richardson, C. A. Simmons, and D. J. Mooney, “Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro,” Biomaterials, vol. 26, no. 3, pp. 303–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Y.-F. Chou, J. C. Y. Dunn, and B. M. Wu, “In vitro response of MC3T3-E1 preosteoblasts within three-dimensional apatite-coated PLGA scaffolds,” Journal of Biomedical Materials Research B, vol. 75, no. 1, pp. 81–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Meleti, I. M. Shapiro, and C. S. Adams, “Inorganic phosphate induces apoptosis of osteoblast-like cells in culture,” Bone, vol. 27, no. 3, pp. 359–366, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Choi and W. L. Murphy, “The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion,” Journal of Materials Chemistry, vol. 22, Article ID 25288, 2012.
  33. H. B. Qu and M. Wei, “Improvement of bonding strength between biomimetic apatite coating and substrate,” Journal of Biomedical Materials Research B, vol. 84, no. 2, pp. 436–443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Sabokbar, P. J. Millett, B. Myer, and N. Rushton, “A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro,” Bone and Mineral, vol. 27, no. 1, pp. 57–67, 1994. View at Scopus
  35. D. G. Castner and B. D. Ratner, “Biomedical surface science: foundations to frontiers,” Surface Science, vol. 500, no. 1–3, pp. 28–60, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Habibovic, C. M. van der Valk, C. A. van Blitterswijk, K. De Groot, and G. Meijer, “Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials,” Journal of Materials Science, vol. 15, no. 4, pp. 373–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Wang, J. de Boer, and K. de Groot, “Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings,” Journal of Biomedical Materials Research A, vol. 90, no. 3, pp. 664–670, 2009. View at Scopus
  38. K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials, vol. 21, no. 7, pp. 667–681, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Liu, J. Y. Lim, H. J. Donahue, R. Dhurjati, A. M. Mastro, and E. A. Vogler, “Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: phenotypic and genotypic responses observed in vitro,” Biomaterials, vol. 28, no. 31, pp. 4535–4550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. E. A. Dos Santos, M. Farina, G. A. Soares, and K. Anselme, “Surface energy of hydroxyapatite and β-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion,” Journal of Materials Science, vol. 19, no. 6, pp. 2307–2316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Zhu, J. Chen, L. Scheideler, T. Altebaeumer, J. Geis-Gerstorfer, and D. Kern, “Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces,” Cells Tissues Organs, vol. 178, no. 1, pp. 13–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Xue, J. L. Moore, H. L. Hosick et al., “Osteoprecursor cell response to strontium-containing hydorxyapatite ceramics,” Journal of Biomedical Materials Research A, vol. 79, no. 4, pp. 804–814, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Minagar, J. Wang, C. C. Berndt, E. P. Ivanova, and C. Wen, “Cell response of anodized nanotubes on titanium and titanium alloys,” Journal of Biomedical Materials Research A, vol. 101, pp. 2726–2739, 2013.
  44. C. Galli, M. Collaud Coen, R. Hauert et al., “Protein adsorption on topographically nanostructured titanium,” Surface Science, vol. 474, no. 1–3, pp. L180–L184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Luo, L. Li, J. Li, et al., “Modulating cellular behaviors through surface nanoroughness,” Journal of Materials Chemistry, vol. 22, Article ID 15654, 2012.
  46. S. Okada, H. Ito, A. Nagai, J. Komotori, and H. Imai, “Adhesion of osteoblast-like cells on nanostructured hydroxyapatite,” Acta Biomaterialia, vol. 6, no. 2, pp. 591–597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Burridge, K. Fath, T. Kelly, G. Nuckolls, and C. Turner, “Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton,” Annual Review of Cell Biology, vol. 4, pp. 487–525, 1988. View at Scopus
  48. E. Martínez, E. Engel, J. A. Planell, and J. Samitier, “Effects of artificial micro- and nano-structured surfaces on cell behaviour,” Annals of Anatomy, vol. 191, no. 1, pp. 126–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. K. Assoian and M. A. Schwartz, “Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression,” Current Opinion in Genetics and Development, vol. 11, no. 1, pp. 48–53, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. J. B. Nebe, L. Müller, F. Lüthen, et al., “Osteoblast response to biomimetically altered titanium surfaces,” Acta Biomaterialia, vol. 4, pp. 1985–1995, 2008.
  51. R. O. C. Oreffo, F. C. M. Driessens, J. A. Planell, and J. T. Triffitt, “Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements,” Biomaterials, vol. 19, no. 20, pp. 1845–1854, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. X. Yu, L. Wang, X. Jiang, D. Rowe, and M. Wei, “Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant,” Journal of Materials Science: Materials in Medicine, vol. 23, pp. 2177–2186, 2012.
  53. M. Gottlander, C. B. Johansson, and T. Albrektsson, “Short- and long-term animal studies with a plasma-sprayed calcium phosphate-coated implant,” Clinical Oral Implants Research, vol. 8, no. 5, pp. 345–351, 1997. View at Scopus
  54. S. B. Goodman, J. A. Davidson, and V. L. Fornasier, “Histological reaction to titanium alloy and hydroxyapatite particles in the rabbit tibia,” Biomaterials, vol. 14, no. 10, pp. 723–728, 1993. View at Publisher · View at Google Scholar · View at Scopus