About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 835385, 9 pages
http://dx.doi.org/10.1155/2013/835385
Clinical Study

Glutamine/Glutamate Metabolism Studied with Magnetic Resonance Spectroscopic Imaging for the Characterization of Adrenal Nodules and Masses

1Department of Diagnostic Imaging, Federal University of São Paulo, Napoleão de Barros 800, Vila Clementino, 04024-002 São Paulo, SP, Brazil
2Department of Endocrinology, Federal University of São Paulo, Pedro de Toledo 650, 2nd Floor, Vila Clementino, 04024-002 São Paulo, SP, Brazil
3Department of Urology, Federal University of São Paulo, Napoleão de Barros 715, 4th Floor, Vila Clementino, 04024-002 São Paulo, SP, Brazil

Received 29 April 2013; Accepted 8 July 2013

Academic Editor: Tosiaki Miyati

Copyright © 2013 Suzan M. Goldman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Bolinger and E. K. Insko, “Spectroscopy: basic principles and techniques,” in Clinical Magnetic Resonance Imaging, R. R. Edelman, J. R. Hesselink, and M. B. Zlatkin, Eds., pp. 353–379, WB Saunders, Philadelphia, Pa, USA, 2nd edition, 1996.
  2. J. F. Faria, S. M. Goldman, J. Szejnfeld et al., “Adrenal masses: characterization with in vivo proton MR spectroscopy. Initial experience,” Radiology, vol. 245, no. 3, pp. 788–797, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. J. Melo, MR Spectroscopy Technical Development For Adrenals Nodules and Masses Differentiation, UNIFESP, São Paulo, Brazil, 2010, http://www.academicoo.com/artigo/mr-spectroscopy-technical-development-for-adrenals-nodules-and-masses-differentiation.
  4. M. A. Medina, F. Sanchez-Jimenez, J. Marquez, A. R. Quesada, and I. N. de Castro, “Relevance of glutamine metabolism to tumor cell growth,” Molecular and Cellular Biochemistry, vol. 113, no. 1, pp. 1–15, 1992. View at Scopus
  5. S. M. Goldman, R. D. Coelho, O. Freire Filho Ede, et al., “Imaging procedures in adrenal pathology,” Arquivos Brasileiros de Endocrinologia e Metabologia, vol. 48, no. 5, pp. 592–611, 2004.
  6. W. Qu, Z. Zha, B. P. Lieberman et al., “Facile synthesis [5-13C-4-2H2]-L-glutamine for hyperpolarized MRS imaging of cancer cell metabolism,” Academic Radiology, vol. 18, no. 8, pp. 932–939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Meng, S. Chen, T. Lao, D. Liang, and N. Sang, “Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells,” Cell Cycle, vol. 9, no. 19, pp. 3921–3932, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. J. Hoffman, “Biochemical insights,” in Cancer and the Search For Selective Biochemical Inhibitors, E. J. Hoffman, Ed., pp. 83–124, CRC Press, New York, NY, USA, 2nd edition, 2007.
  9. L. B. Gladden, “Lactate metabolism: a new paradigm for the third millennium,” Journal of Physiology, vol. 558, no. 1, pp. 5–30, 2004.
  10. P. A. Bottomley, H. R. Hart Jr., W. A. Edelstein, et al., “Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1. 5 Tesla,” Radiology, vol. 150, no. 2, pp. 441–446, 1984.
  11. Siemens, MR Spectroscopy Operator Manual. Version Syngo MR, Siemens, Erlangen, Germany, 2001.
  12. R. B. Lufkin, “Física da ressonância magnética,” in Manual De Ressonância Magnética, R. B. Lufkin, Ed., pp. 3–13, Guanabara-Koogan, Rio de Janeiro, Brazil, 2nd edition, 1999.
  13. S. Williams, “Cerebral amino acids studied by nuclear magnetic resonance spectroscopy in vivo,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 34, no. 3-4, pp. 301–326, 1999. View at Scopus
  14. A. A. Maudsley and S. K. Hilal, “Field inhomogeneity correction and data processing for spectroscopic imaging,” Magnetic Resonance in Medicine, vol. 2, no. 3, pp. 218–233, 1985. View at Scopus
  15. J. K. Smith, M. Castillo, and L. Kwock, “MR spectroscopy of brain tumors,” Magnetic Resonance Imaging Clinics of North America, vol. 11, no. 3, pp. 415–429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. F. A. Jansen, W. H. Backes, K. Nicolay, and M. E. Kooi, “1H MR spectroscopy of the brain: absolute quantification of metabolites,” Radiology, vol. 240, no. 2, pp. 318–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. S. Wishart, C. Knox, A. C. Guo et al., “HMDB: a knowledgebase for the human metabolome,” Nucleic Acids Research, vol. 37, no. 1, pp. D603–D610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Leroy-Willig, J. Bittoun, J. P. Luton et al., “In vivo MR spectroscopic imaging of the adrenal glands: distinction between adenomas and carcinomas larger than 15 mm based on lipid content,” The American Journal of Roentgenology, vol. 153, no. 4, pp. 771–773, 1989. View at Scopus
  19. S. Kim, N. Salibi, A. D. Hardie et al., “Characterization of adrenal pheochromocytoma using respiratory-triggered proton MR spectroscopy: initial experience,” The American Journal of Roentgenology, vol. 192, no. 2, pp. 450–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Narayan, D. B. Vigneron, P. Jajodia et al., “Transrectal probe for 1HMRI and 31 MR spectroscopy of the prostate gland,” Magnetic Resonance in Medicine, vol. 11, no. 2, pp. 209–220, 1989. View at Scopus
  21. T. W. J. Scheenen, G. Gambarota, E. Weiland, et al., “Optimal timing for in vivo 1H-MR spectroscopic imaging of the human prostate at 3T,” Magnetic Resonance in Medicine, vol. 53, pp. 1268–1274, 2005.
  22. P. Jissendi Tchofo and D. Balériaux, “Brain 1H-MR spectroscopy in clinical neuroimaging at 3T,” Journal of Neuroradiology, vol. 36, no. 1, pp. 24–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. I. Alexandrakia and A. B. Gross, “Adrenal incidentalomas: ‘the rule of four’,” Clinical Medicine, vol. 8, pp. 201–204, 2008.