About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 836790, 15 pages
http://dx.doi.org/10.1155/2013/836790
Review Article

The Roles of Genetic Polymorphisms and Human Immunodeficiency Virus Infection in Lipid Metabolism

1Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
2Pathological Sciences Postgraduate Program, Biological Sciences Center, State University of Londrina, Campus Universitário, CEP 86051-970 Londrina, PR, Brazil
3Postgraduate Program of Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
4Clinical Immunology, Clinical Analysis Laboratory, Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
5Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Campus Universitário, CEP 86051-970 Londrina, PR, Brazil

Received 30 April 2013; Revised 2 September 2013; Accepted 11 September 2013

Academic Editor: Cristiano Capurso

Copyright © 2013 Elaine Regina Delicato de Almeida et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Dyslipidemia has been frequently observed among individuals infected with human immunodeficiency virus type 1 (HIV-1), and factors related to HIV-1, the host, and antiretroviral therapy (ART) are involved in this phenomenon. This study reviews the roles of genetic polymorphisms, HIV-1 infection, and highly active antiretroviral therapy (HAART) in lipid metabolism. Lipid abnormalities can vary according to the HAART regimen, such as those with protease inhibitors (PIs). However, genetic factors may also be involved in dyslipidemia because not all patients receiving the same HAART regimen and with comparable demographic, virological, and immunological characteristics develop variations in the lipid profile. Polymorphisms in a large number of genes are involved in the synthesis of structural proteins, and enzymes related to lipid metabolism account for variations in the lipid profile of each individual. As some genetic polymorphisms may cause dyslipidemia, these allele variants should be investigated in HIV-1-infected patients to identify individuals with an increased risk of developing dyslipidemia during treatment with HAART, particularly during therapy with PIs. This knowledge may guide individualized treatment decisions and lead to the development of new therapeutic targets for the treatment of dyslipidemia in these patients.