About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 836790, 15 pages
http://dx.doi.org/10.1155/2013/836790
Review Article

The Roles of Genetic Polymorphisms and Human Immunodeficiency Virus Infection in Lipid Metabolism

1Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
2Pathological Sciences Postgraduate Program, Biological Sciences Center, State University of Londrina, Campus Universitário, CEP 86051-970 Londrina, PR, Brazil
3Postgraduate Program of Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
4Clinical Immunology, Clinical Analysis Laboratory, Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
5Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Campus Universitário, CEP 86051-970 Londrina, PR, Brazil

Received 30 April 2013; Revised 2 September 2013; Accepted 11 September 2013

Academic Editor: Cristiano Capurso

Copyright © 2013 Elaine Regina Delicato de Almeida et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. M. Andrade and M. H. Hutz, “O componente genético da determinação dos lipídeos séricos,” Ciência & Saúde Coletiva, vol. 7, no. 1, pp. 175–182, 2002.
  2. A. M. Valente, A. F. Reis, D. M. Machado, R. C. Succi, and A. R. Chacra, “Alterações metabólicas da síndrome lipodistrofia do HIV,” Arquivos Brasileiros de Endocrinologia & Metabologia, vol. 49, no. 6, pp. 10–17, 2005.
  3. V. Estrada and J. Portilla, “Dyslipidemia related to antiretroviral therapy,” AIDS Reviews, vol. 13, no. 1, pp. 49–56, 2011. View at Scopus
  4. A. Wlodawer and J. Vondrasek, “Terapia anti-aids,” Annual Review of Biophysics and Biomolecular Structure, vol. 27, no. 249, pp. 10–16, 1998.
  5. L. Menéndez-Arias, “Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments,” Antiviral Research, vol. 98, no. 1, pp. 93–120, 2013.
  6. UNAIDS, “World AIDS Day Report,” 2012, http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/JC2434_WorldAIDSday_results_en.pdf.
  7. F. J. Palella Jr., K. M. Delaney, A. C. Moorman et al., “Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection,” The New England Journal of Medicine, vol. 338, no. 13, pp. 853–860, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Detels, A. Muñoz, G. McFarlane et al., “Effectiveness of potent antiretroviral therapy on time to AIDS and death in men with known HIV infection duration,” Journal of the American Medical Association, vol. 280, no. 17, pp. 1497–1503, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Sudano, L. E. Spieker, G. Noll, R. Corti, R. Weber, and T. F. Lüscher, “Cardiovascular disease in HIV infection,” American Heart Journal, vol. 151, no. 6, pp. 1147–1155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. M. Guimarães, D. B. Greco, A. R. O. Júnior, M. G. Penido, and L. J. C. Machado, “Distribuição da gordura corporal e perfis lipídico e glicêmico de pacientes infectados pelo HIV,” Arquivos Brasileiros de Endocrinologia & Metabologia, vol. 51, no. 1, pp. 42–51, 2007.
  11. M. Arnedo, P. Taffé, R. Sahli et al., “Contribution of 20 single nucleotide polymorphisms of 13 genes to dyslipidemia associated with antiretroviral therapy,” Pharmacogenetics and Genomics, vol. 17, no. 9, pp. 755–764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. E. Tarr, M. Rotger, and A. Telenti, “Dyslipidemia in HIV-infected individuals: from pharmacogenetics to pharmacogenomics,” Pharmacogenomics, vol. 11, no. 4, pp. 587–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Egaña-Gorroño, E. Martínez, B. Cormand, T. Escribà, J. Gatell, and M. Arnedo, “Impact of genetic factors on dyslipidemia in HIV-infected patients starting antiretroviral therapy,” AIDS, vol. 27, pp. 529–538, 2013.
  14. O. O. Kirillova, “Modern concepts of gene polymorphisms which regulate lipid metabolism,” Vopr Pitan, vol. 81, no. 4, pp. 48–58, 2012.
  15. L. A. Salazar, M. H. Hirata, N. Forti et al., “Pvu II intron 15 polymorphism at the LDL receptor gene is associated with differences in serum lipid concentrations in subjects with low and high risk for coronary artery disease from Brazil,” Clinica Chimica Acta, vol. 293, no. 1-2, pp. 75–88, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. E. S. Lander and Whitehead Institute for Biomedical Research, “Initial sequencing and analysis of the human genome,” Nature, vol. 409, pp. 860–921, 2001.
  17. F. S. Collins, L. D. Brooks, and A. Chakravarti, “A DNA polymorphism discovery resource for research on human genetic variation,” Genome Research, vol. 8, no. 12, pp. 1229–1231, 1998. View at Scopus
  18. D. J. Freeman, B. A. Griffin, A. P. Holmes et al., “Regulation of plasma HDL cholesterol and subfraction distribution by genetic and environmental factors: associations between the TaqI B RFLP in the CETP gene and smoking and obesity,” Arteriosclerosis and Thrombosis, vol. 14, no. 3, pp. 336–344, 1994. View at Scopus
  19. M.-C. Vohl, B. Lamarche, A. Pascot et al., “Contribution of the cholesteryl ester transfer protein gene TaqlB polymorphism to the reduced plasma HDL-cholesterol levels found in abdominal obese men with the features of the insulin resistance syndrome,” International Journal of Obesity, vol. 23, no. 9, pp. 918–925, 1999. View at Scopus
  20. M. Fiegenbaum, Estudo da variabilidade em genes de apolipoproteínas sobre níveis lipídicos e parâmetros de massa e gordura corporal na população de Porto Alegre [Dissertação de Mestrado], Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, Brazil, 2001.
  21. R. D. Santos, “Sociedade Brasileira de Cardiologia. III Diretrizes Brasileiras sobre Dislipidemias e Diretrizes de Prevenção da Aterosclerose do Departamento de Aterosclerose da Sociedade Brasileira de Dislipidemias,” Arquivos Brasileiros de Cardiologia, vol. 77, supplement 3, pp. 1–48, 2001.
  22. V. A. Stepanov, V. P. Puzyrev, R. S. Karpov, and A. I. Kutmin, “Genetic markers in coronary artery disease in a Russian population,” Human Biology, vol. 70, no. 1, pp. 47–57, 1998. View at Scopus
  23. L. A. Salazar, M. H. Hirata, S. D. Giannini et al., “Effects of AvaII and HincII polymorphisms at the LDL-receptor gene on serum lipid levels of Brazilian individuals with high risk for coronary heart disease,” Journal of Clinical Laboratory Analysis, vol. 13, pp. 251–258, 1999.
  24. A. F. A. Siqueira, D. S. P. Abdalla, and S. R. G. Ferreira, “LDL: da síndrome metabólica à instabilização da placa aterosclerótica,” Arquivos Brasileiros de Endocrinologia & Metabologia, vol. 50, no. 2, pp. 334–343, 2006.
  25. E. S. Lima and R. D. Couto, “Estrutura, metabolismo e funções fisiológicas da lipoproteína de alta densidade,” Jornal Brasileiro de Patologia e Medicina Laboratorial, vol. 42, no. 3, pp. 169–178, 2006.
  26. L. A. Simons, “Interrelations of lipids and lipoproteins with coronary artery disease mortality in 19 countries,” American Journal of Cardiology, vol. 57, no. 14, pp. 5G–10G, 1986. View at Scopus
  27. E. C. Faria, V. S. C. Moraes, M. L. P. S. Oliveira, A. A. Varriano, C. A. M. Silva, and L. N. Castilho, “Risk factors for coronary artery disease in women. A study in a Brazilian population,” Atherosclerosis, vol. 144, article 101, 1999.
  28. L. A. Salazar, M. H. Hirata, S. D. Giannini et al., “Seven DNA polymorphisms at the candidate genes of atherosclerosis in Brazilian women with angiographically documented coronary artery disease,” Clinica Chimica Acta, vol. 300, no. 1-2, pp. 139–149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. C. Sposito, “Sociedade Brasileira de Cardiologia. IV Diretrizes Brasileiras sobre Dislipidemias e Prevenção da Aterosclerose do Departamento de Aterosclerose da Sociedade Brasileira de Dislipidemias,” Arquivos Brasileiros de Cardiologia, vol. 88, supplement 1, pp. 1–19, 2007.
  30. M. Rotger, C. Bayard, P. Taffé et al., “Contribution of genome-wide significant single-nucleotide polymorphisms and antiretroviral therapy to dyslipidemia in HIV-infected individuals: a longitudinal study,” Circulation, vol. 2, no. 6, pp. 621–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. S. Hogg, B. Yip, C. Kully et al., “Improved survival among HIV-infected patients after initiation of triple-drug antiretroviral regimens,” Canadian Medical Association Journal, vol. 160, no. 5, pp. 659–665, 1999. View at Scopus
  32. J. R. P. Marins, L. F. Jamal, S. Y. Chen et al., “Dramatic improvement in survival among adult Brazilian AIDS patients,” AIDS, vol. 17, no. 11, pp. 1675–1682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Arshad, A. Bansal, R. C. Patel, and W. H. Frishman, “Cardiac complications of human immunodeficiency virus infection: diagnostic and therapeutic considerations,” Heart Disease, vol. 2, no. 2, pp. 133–145, 2000. View at Scopus
  34. G. Barbaro, “Cardiovascular manifestations of HIV infection,” Circulation, vol. 106, no. 11, pp. 1420–1425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Petit, M. Duong, L. Duvillard et al., “LDL-receptors expression in HIV-infected patients: relations to antiretroviral therapy, hormonal status, and presence of lipodystrophy,” European Journal of Clinical Investigation, vol. 32, no. 5, pp. 354–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Constans, J. L. Pellegrin, E. Peuchant et al., “Plasma lipids in HIV-infected patients: a prospective study in 95 patients,” European Journal of Clinical Investigation, vol. 24, no. 6, pp. 416–420, 1994. View at Scopus
  37. M. K. Hellerstein, C. Grunfeld, K. Wu et al., “Increased de novo hepatic lipogenesis in human immunodeficiency virus infection,” Journal of Clinical Endocrinology and Metabolism, vol. 76, no. 3, pp. 559–565, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Grunfeld, D. P. Kotler, R. Hamadeh, A. Tierney, J. Wang, and R. N. Pierson Jr., “Hypertriglyceridemia in acquired immunodeficiency syndrome,” American Journal of Medicine, vol. 86, no. 1, pp. 27–31, 1989. View at Scopus
  39. S. R. Penzak and S. K. Chuck, “Hyperlipidemia associated with HIV protease inhibitor use: pathophysiology, prevalence, risk factors and treatment,” Scandinavian Journal of Infectious Diseases, vol. 32, no. 2, pp. 111–123, 2000. View at Scopus
  40. H. Rose, I. Woolley, J. Hoy et al., “HIV infection and high-density lipoprotein: the effect of the disease vs the effect of treatment,” Metabolism, vol. 55, no. 1, pp. 90–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Zangerle, M. Sarcletti, H. Gallati, G. Reibnegger, H. Wachter, and D. Fuchs, “Decreased plasma concentrations of HDL cholesterol in HIV-infected individuals are associated with immune activation,” Journal of Acquired Immune Deficiency Syndromes, vol. 7, no. 11, pp. 1149–1156, 1994. View at Scopus
  42. C. Pirich, Y. Efthimiou, J. O'Grady, C. Zielinski, and H. Sinzinger, “Apolipoprotein A and biological half-life of prostaglandin I2 in HIV-1 infection,” Thrombosis Research, vol. 81, no. 2, pp. 213–218, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Khovidhunkit, R. A. Memon, J. K. Shigenaga et al., “Plasma platelet-activating factor acetylhydrolase activity in human immunodeficiency virus infection and the acquired immunodeficiency syndrome,” Metabolism, vol. 48, no. 12, pp. 1524–1531, 1999. View at Scopus
  44. B. Coll, J. P. H. van Wijk, S. Parra et al., “Effects of rosiglitazone and metformin on postprandial paraoxonase-1 and monocyte chemoattractant protein-1 in human immunodeficiency virus-infected patients with lipodystrophy,” European Journal of Pharmacology, vol. 544, no. 1–3, pp. 104–110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. J. Rader, “Molecular regulation of HDL metabolism and function: implications for novel therapies,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3090–3100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Sala, A. L. Catapano, and G. D. Norata, “High-density lipoproteins and atherosclerosis: emerging aspects,” Journal of Geriatric Cardiology, vol. 9, pp. 401–407, 2012.
  47. Z. Mujawar, H. Rose, M. P. Morrow et al., “Human immunodeficiency virus impairs reverse cholesterol transport from macrophages,” PLoS Biology, vol. 4, no. 11, Article ID e365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Oh and R. A. Hegele, “HIV-associated dyslipidaemia: pathogenesis and treatment,” The Lancet Infectious Diseases, vol. 7, no. 12, pp. 787–796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Tape and R. Kisilevsky, “Apolipoprotein A-I and apolipoprotein SAA half-lives during acute inflammation and amyloidogenesis,” Biochimica et Biophysica Acta, vol. 1043, no. 3, pp. 295–300, 1990. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Grunfeld, D. P. Kotler, J. K. Shigenaga et al., “Circulating interferon-α levels and hypertriglyceridemia in the acquired immunodeficiency syndrome,” American Journal of Medicine, vol. 90, no. 2, pp. 154–162, 1991. View at Scopus
  51. L. Farhi, D. B. De Lima, and C. B. Cunha, “Dyslipidemia in HIV/AIDS patients in antiretroviral therapy in a university hospital, Rio de Janeiro, Brazil,” Jornal Brasileiro de Patologia e Medicina Laboratorial, vol. 44, no. 3, pp. 175–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Guardiola, R. Ferré, J. Salazar et al., “Protease inhibitor-associated dyslipidemia in HIV-infected patients is strongly influenced by the APOA5-1131T→C gene variation,” Clinical Chemistry, vol. 52, no. 10, pp. 1914–1919, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. S. A. Riddler, E. Smit, S. R. Cole et al., “Impact of HIV Infection and HAART on Serum Lipids in Men,” Journal of the American Medical Association, vol. 289, no. 22, pp. 2978–2982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. D. N. Reeds, K. E. Yarasheski, L. Fontana et al., “Alterations in liver, muscle, and adipose tissue insulin sensitivity in men with HIV infection and dyslipidemia,” American Journal of Physiology, vol. 290, no. 1, pp. E47–E53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Carr, K. Samaras, S. Burton et al., “A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors,” AIDS, vol. 12, no. 7, pp. F51–F58, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Chi, J. Henry, J. Kelley, R. Thorpe, J. K. Smith, and G. Krishnaswamy, “The effects of HIV infection on endothelial function,” Endothelium, vol. 7, no. 4, pp. 223–242, 2000. View at Scopus
  57. J. D. Lundgren, “Combination antiretroviral therapy and the risk of myocardial infarction: the data collection on adverse events of Anti-HIV Drugs (DAD) Study Group,” The New England Journal of Medicine, vol. 349, no. 21, pp. 1993–2003, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Friis-Møller, P. Reiss, C. A. Sabin et al., “Class of antiretroviral drugs and the risk of myocardial infarction,” The New England Journal of Medicine, vol. 356, no. 17, pp. 1723–1735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Carr, K. Samaras, D. J. Chisholm, and D. A. Cooper, “Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance,” The Lancet, vol. 351, no. 9119, pp. 1881–1883, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Calza, R. Manfredi, and F. Chiodo, “Dyslipidaemia associated with antiretroviral therapy in HIV-infected patients,” Journal of Antimicrobial Chemotherapy, vol. 53, no. 1, pp. 10–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Y. Hui, “Effects of HIV protease inhibitor therapy on lipid metabolism,” Progress in Lipid Research, vol. 42, no. 2, pp. 81–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Lagathu, M. Kim, M. Maachi et al., “HIV antiretroviral treatment alters adipokine expression and insulin sensitivity of adipose tissue in vitro and in vivo,” Biochimie, vol. 87, no. 1, pp. 65–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. M. S. Brown and J. L. Goldstein, “A receptor-mediated pathway for cholesterol homeostasis,” Science, vol. 232, no. 4746, pp. 34–47, 1986. View at Scopus
  64. H. Tolleshaug, J. L. Goldstein, W. J. Schneider, and M. S. Brown, “Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia,” Cell, vol. 30, no. 3, pp. 715–724, 1982. View at Scopus
  65. J. L. Goldstein and M. S. Brown, “Progress in understanding the LDL receptor and HMG-CoA reductase, two membrane proteins that regulate the plasma cholesterol,” Journal of Lipid Research, vol. 25, no. 13, pp. 1450–1461, 1984. View at Scopus
  66. H. H. Hobbs, M. S. Brown, and J. L. Goldstein, “Molecular genetics of the LDL receptor gene in familial hypercholesterolemia,” Human Mutation, vol. 1, no. 6, pp. 445–466, 1992. View at Scopus
  67. T. C. Sudhof, J. L. Goldstein, M. S. Brown, and D. W. Russell, “The LDL receptor gene: a mosaic of exons shared with different proteins,” Science, vol. 228, no. 4701, pp. 815–822, 1985. View at Scopus
  68. E. Usifo, S. E. Leigh, R. A. Whittall et al., “Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment,” Annals of Human Genetics, vol. 76, no. 5, pp. 387–401, 2012.
  69. J. C. Pedersen and K. Berg, “Normal DNA polymorphism at the low density lipoprotein receptor (LDLR) locus associated with serum cholesterol level,” Clinical Genetics, vol. 34, no. 5, pp. 306–312, 1988. View at Scopus
  70. N. B. Myant, J. J. Gallagher, B. L. Knight et al., “Clinical signs of familial hypercholesterolemia in patients with familial defective apolipoprotein B-100 and normal low density lipoprotein receptor function,” Arteriosclerosis and Thrombosis, vol. 11, no. 3, pp. 691–703, 1991. View at Scopus
  71. S. A. Wiseman, J. T. Powell, S. E. Humphries, and M. Press, “The magnitude of the hypercholesterolemia of hypothyroidism is associated with variation in the low density lipoprotein receptor gene,” Journal of Clinical Endocrinology and Metabolism, vol. 77, no. 1, pp. 108–112, 1993. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Gylling, K. Kontula, U.-M. Koivisto, H. E. Miettinen, and T. A. Miettinen, “Polymorphisms of the genes encoding apoproteins A-I, B, C-III, and E and LDL receptor, and cholesterol and LDL metabolism during increased cholesterol intake: common alleles of the apoprotein E gene show the greatest regulatory impact,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 1, pp. 38–44, 1997. View at Scopus
  73. V. Gudnason, T. Zhou, K. Thormar et al., “Detection of the low density lipoprotein receptor gene PvuII intron 15 polymorphism using the polymerase chain reaction: association with plasma lipid traits in healthy men and women,” Disease Markers, vol. 13, no. 4, pp. 209–220, 1998. View at Scopus
  74. E. Leitersdorf, A. Chakravarti, and H. H. Hobbs, “Polymorphic DNA haplotypes at the LDL receptor locus,” American Journal of Human Genetics, vol. 44, no. 3, pp. 409–421, 1989. View at Scopus
  75. F. J. Chaves, O. Puig, M. García-Sogo et al., “Seven DNA polymorphisms in the LDL receptor gene: application to the study of familial hypercholesterolemia in Spain,” Clinical Genetics, vol. 50, no. 1, pp. 28–35, 1996. View at Scopus
  76. L. A. Salazar, S. A. Cavalli, M. H. Hirata et al., “Polymorphisms of the low-density lipoprotein receptor gene in Brazilian individuals with heterozygous familial hypercholesterolemia,” Brazilian Journal of Medical and Biological Research, vol. 33, no. 11, pp. 1301–1304, 2000. View at Scopus
  77. L. K. Curtiss and W. A. Boisvert, “Apolipoprotein E and atherosclerosis,” Current Opinion in Lipidology, vol. 11, no. 3, pp. 243–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. A. C. Brandão, S. Pinheiro Jr., M. A. Pinhel et al., “Polimorfismo genético da apolipoproteína E na doença arterial periférica,” Jornal Vascular Brasileiro, vol. 3, no. 4, pp. 317–322, 2004.
  79. N. Forti, L. A. Salazar, J. Diament, S. D. Giannini, M. H. Hirata, and R. D. C. Hirata, “Genetic changes and cholesterolemia: recent Brazilian studies,” Arquivos Brasileiros de Cardiologia, vol. 80, no. 5, pp. 565–571, 2003. View at Scopus
  80. V. G. Shore and B. Shore, “Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components,” Biochemistry, vol. 12, no. 3, pp. 502–507, 1973. View at Scopus
  81. H. N. Ginsberg, “Lipoprotein physiology,” Endocrinology and Metabolism Clinics of North America, vol. 27, no. 3, pp. 503–519, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. M. F. Linton, A. H. Hasty, V. R. Babaev, and S. Fazio, “Hepatic apo E expression is required for remnant lipoprotein clearance in the absence of the low density lipoprotein receptor,” Journal of Clinical Investigation, vol. 101, no. 8, pp. 1726–1736, 1998. View at Scopus
  83. C. H. A. Schwanke, I. B. M. Cruz, N. F. Leal, R. Scheibe, Y. Moriguchi, and E. H. Moriguchi, “Análise da associação entre polimorfismo do gene da apolipoproteína E e fatores de risco cardiovascular em idosos longevos,” Arquivos Brasileiros de Cardiologia, vol. 78, no. 6, pp. 561–570, 2002.
  84. R. W. Mahley and Y. Huang, “Apoliprotein E: from atherosclerosis to Alzheimer’s disease and beyond,” Current Opinion in Lipidology, vol. 10, pp. 207–217, 1999.
  85. T. Mazzone, “Apolipoprotein E secretion by macrophages: its potential physiological functions,” Current Opinion in Lipidology, vol. 7, no. 5, pp. 303–307, 1996. View at Scopus
  86. D. M. Hallman, E. Boerwinkle, N. Saha et al., “The apolipoprotein E polymorphism: a comparison of allele frequencies and effects in nine populations,” American Journal of Human Genetics, vol. 49, no. 2, pp. 338–349, 1991. View at Scopus
  87. L. U. Gerdes, I. C. Klausen, I. Sihm, and O. Faergeman, “Apolipoprotein E polymorphism in a Danish population compared to findings in 45 other study populations around the world,” Genetic Epidemiology, vol. 9, no. 3, pp. 155–167, 1992. View at Scopus
  88. J. E. Eichner, S. T. Dunn, G. Perveen, D. M. Thompson, K. E. Stewart, and B. C. Stroehla, “Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review,” American Journal of Epidemiology, vol. 155, no. 6, pp. 487–495, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Siest, T. Pillot, A. Regis-Bailly et al., “Apolipoprotein E: an important gene and protein to follow in laboratory medicine,” Clinical Chemistry, vol. 41, no. 8, pp. 1068–1086, 1995. View at Scopus
  90. J. Davignon, R. E. Gregg, and C. F. Sing, “Apolipoprotein E polymorphism and atherosclerosis,” Arteriosclerosis, vol. 8, no. 1, pp. 1–21, 1988. View at Scopus
  91. A. P. Mansur, “Análise do componente genético da doença coronariana,” Arquivos Brasileiros de Cardiologia, vol. 74, pp. 531–533, 2000.
  92. L. Tiret, P. De Knijff, H.-J. Menzel, C. Ehnholm, V. Nicaud, and L. M. Havekes, “ApoE polymorphism and predisposition to coronary heart disease in youths of different European population: the EARS study,” Arteriosclerosis and Thrombosis, vol. 14, no. 10, pp. 1617–1624, 1994. View at Scopus
  93. A. Bercedo-Sanz, D. Gonzalez-Lamuno, S. Malaga, and M. Garcia-Fuentes, “Impact of ApoE4 allele on total cholesterol levels of children in northern Spain,” Clinical Genetics, vol. 55, no. 1, pp. 69–70, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Sakuma, R. D. C. Hirata, and M. H. Hirata, “Five polymorphisms in gene candidates for cardiovascular disease in Afro-Brazilian individuals,” Journal of Clinical Laboratory Analysis, vol. 18, no. 6, pp. 309–316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. S. G. Young, “Recent progress in understanding apolipoprotein B,” Circulation, vol. 82, no. 5, pp. 1574–1594, 1990. View at Scopus
  96. P. Avogaro, G. Bittolo Bon, G. Cazzolato, and E. Rorai, “Relationship between apolipoproteins and chemical components of lipoproteins in survivors of myocardial infarction,” Atherosclerosis, vol. 37, no. 1, pp. 69–76, 1980. View at Scopus
  97. R. I. Levy, “Cholesterol, lipoproteins, apoproteins, and heart disease: present status and future prospects,” Clinical Chemistry, vol. 27, no. 5, pp. 653–662, 1981. View at Scopus
  98. B. Lewis, “The lipoproteins: predictors, protectors, and pathogens,” British Medical Journal, vol. 287, no. 6400, pp. 1161–1164, 1983. View at Scopus
  99. J. H. Wu, M. S. Wen, S. K. Lo, and M. S. Chern, “Increased frequency of apolipoprotein B signal peptide sp24/24 in patients with coronary artery disease. General allele survey in the population of Taiwan and comparison with Caucasians,” Clinical Genetics, vol. 45, no. 5, pp. 250–254, 1994. View at Scopus
  100. P. R. Turner, P. J. Talmud, S. Visvikis, C. Ehnholm, and L. Tiret, “DNA polymorphisms of the apoprotein B gene are associated with altered plasma lipoprotein concentrations but not with perceived risk of cardiovascular disease: European Atherosclerosis Research Study,” Atherosclerosis, vol. 116, no. 2, pp. 221–234, 1995. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Gardemann, D. Ohly, M. Fink et al., “Association of the insertion/deletion gene polymorphism of the apolipoprotein B signal peptide with myocardial infarction,” Atherosclerosis, vol. 141, no. 1, pp. 167–175, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. E. H. Ludwig and B. J. McCarthy, “Haplotype analysis of the human apolipoprotein B mutation associated with familial defective apolipoprotein B100,” American Journal of Human Genetics, vol. 47, no. 4, pp. 712–720, 1990. View at Scopus
  103. D.-Y. Tai, J.-P. Pan, and G.-J. Lee-Chen, “Identification and haplotype analysis of apolipoprotein B-100 Arg3500Trp mutation in hyperlipidemic Chinese,” Clinical Chemistry, vol. 44, no. 8, pp. 1659–1665, 1998. View at Scopus
  104. K. Berg, “DNA polymorphism at the apolipoprotein B locus is associated with lipoprotein level,” Clinical Genetics, vol. 30, no. 6, pp. 515–520, 1986. View at Scopus
  105. P. S. Hansen, J. C. Defesche, J. J. P. Kastelein et al., “Phenotypic variation in patients heterozygous for familial defective apolipoprotein B (FDB) in three European countries,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 4, pp. 741–747, 1997. View at Scopus
  106. E. C. R. Guzman, M. H. Hirata, E. C. R. Quintao, and R. D. C. Hirata, “Association of the apolipoprotein B gene polymorphisms with cholesterol levels and response to fluvastatin in Brazilian individuals with high risk for coronary heart disease,” Clinical Chemistry and Laboratory Medicine, vol. 38, no. 8, pp. 731–736, 2000. View at Scopus
  107. A. Law, S. C. Wallis, and L. M. Powell, “Common DNA polymorphism within coding sequence of apolipoprotein B gene associated with altered lipid levels,” The Lancet, vol. 1, no. 8493, pp. 1301–1302, 1986. View at Scopus
  108. R. A. Hegele, L.-S. Huang, and P. N. Herbert, “Apolipoprotein B-gene DNA polymorphisms associated with myocardial infarction,” The New England Journal of Medicine, vol. 315, no. 24, pp. 1509–1515, 1986. View at Scopus
  109. P. J. Talmud, N. Barni, and A. M. Kessling, “Apolipoprotein B gene variants are involved in the determination of serum cholesterol levels: a study in normo- and hyperlipidaemic individuals,” Atherosclerosis, vol. 67, no. 1, pp. 81–89, 1987. View at Scopus
  110. J. J. Genest Jr., J. M. Ordovas, J. R. McNamara et al., “DNA polymorphisms of the apolipoprotein B gene in patients with premature coronary artery disease,” Atherosclerosis, vol. 82, no. 1-2, pp. 7–17, 1990. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Peacock, A. Dunning, A. Hamsten, P. Tornvall, S. Humphries, and P. Talmud, “Apolipoprotein B gene polymorphisms, lipoproteins and coronary atherosclerosis: a study of young myocardial infarction survivors and healthy population-based individuals,” Atherosclerosis, vol. 92, no. 2-3, pp. 151–164, 1992. View at Publisher · View at Google Scholar · View at Scopus
  112. D. Gaffney, D. J. Freeman, J. Shepherd, and C. J. Packard, “The ins/del polymorphism in the signal sequence of apolipoprotein B has no effect on lipid parameters,” Clinica Chimica Acta, vol. 218, no. 2, pp. 131–138, 1993. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Glišić, J. Prljić, N. Radovanović, and D. Alavantić, “Study of apoB gene signal peptide insertion/deletion polymorphism in a healthy Serbian population: no association with serum lipid levels,” Clinica Chimica Acta, vol. 263, no. 1, pp. 57–65, 1997. View at Publisher · View at Google Scholar · View at Scopus
  114. N. B. Myant, J. Gallagher, M. Barbir, G. R. Thompson, D. Wile, and S. E. Humphries, “Restriction fragment length polymorphisms in the apo B gene in relation to coronary artery disease,” Atherosclerosis, vol. 77, no. 2-3, pp. 193–201, 1989. View at Scopus
  115. M. Bohn, A. Bakken, J. Erikssen, and K. Berg, “XbaI polymorphism in DNA at the apolipoprotein B locus is associated with myocardial infarction (MI),” Clinical Genetics, vol. 44, no. 5, pp. 241–248, 1993. View at Scopus
  116. O. Ukkola, M. J. Savolainen, P. I. Salmela, K. Von Dickhoff, and Y. Antero Kesaniemi, “Apolipoprotein B gene DNA polymorphisms are associated with macro- and microangiopathy in non-insulin-dependent diabetes mellitus,” Clinical Genetics, vol. 44, no. 4, pp. 177–184, 1993. View at Scopus
  117. J. Lopez-Miranda, J. M. Ordovas, M. A. Ostos et al., “Dietary fat clearance in normal subjects is modulated by genetic variation at the apolipoprotein B gene locus,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 9, pp. 1765–1773, 1997. View at Scopus
  118. B. Paulweber, W. Friedl, F. Krempler, S. E. Humphries, and F. Sandhofer, “Association of DNA polymorphism at the apolipoprotein B gene locus with coronary heart disease and serum very low density lipoprotein levels,” Arteriosclerosis, vol. 10, no. 1, pp. 17–24, 1990. View at Scopus
  119. M.-C. Pouliot, J.-P. Despres, F. T. Dionne et al., “ApoB-100 gene EcoRI polymorphism: relations to plasma lipoprotein changes associated with abdominal visceral obesity,” Arteriosclerosis and Thrombosis, vol. 14, no. 4, pp. 527–533, 1994. View at Scopus
  120. M. Bohn, A. Bakken, J. Erikssen, and K. Berg, “The apolipoprotein B signal peptide insertion/deletion polymorphism is not associated with myocardial infarction in Norway,” Clinical Genetics, vol. 45, no. 5, pp. 255–259, 1994.
  121. S. H. Hong, C. C. Lee, and J. Q. Kim, “Genetic variation of the apolipoprotein b gene in korean patients with coronary artery disease,” Molecules and Cells, vol. 7, no. 4, pp. 521–525, 1997. View at Scopus
  122. M. O. Machado, M. H. Hirata, M. C. Bertolami, and R. D. C. Hirata, “Apo B gene haplotype is associated with lipid profile of higher risk for coronary heart disease in Caucasian Brazilian men,” Journal of Clinical Laboratory Analysis, vol. 15, pp. 19–24, 2001.
  123. S. A. Cavalli, M. H. Hirata, L. A. Salazar et al., “Apolipoprotein B gene polymorphisms: prevalence and impact on serum lipid concentrations in hypercholesterolemic individuals from Brazil,” Clinica Chimica Acta, vol. 302, pp. 189–203, 2000.
  124. G. A. P. Bruns, S. K. Karathanasis, and J. L. Breslow, “Human apolipoprotein A-I-C-III gene complex is located on chromosome 11,” Arteriosclerosis, vol. 4, no. 2, pp. 97–102, 1984. View at Scopus
  125. F. G. Schaap, P. C. N. Rensen, P. J. Voshol et al., “ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglycerides (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis,” Journal of Biological Chemistry, vol. 279, no. 27, pp. 27941–27947, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. C. J. Fielding, V. G. Shore, and P. E. Fielding, “A protein cofactor of lecithin: cholesterol acyltransferase,” Biochemical and Biophysical Research Communications, vol. 46, no. 4, pp. 1493–1498, 1972. View at Scopus
  127. J. L. Jenner, L. J. Seman, J. S. Millar et al., “The metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein (a) in human beings,” Metabolism, vol. 54, no. 3, pp. 361–369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. R. E. Peacock, A. Hamsten, J. Johansson, P. Nilsson-Ehle, and S. E. Humphries, “Associations of genotypes at the apolipoprotein AI-CIII-AIV, apolipoprotein B and lipoprotein lipase gene loci with coronary atherosclerosis and high density lipoprotein subclasses,” Clinical Genetics, vol. 46, no. 4, pp. 273–282, 1994. View at Scopus
  129. C.-S. Wang, W. McConathy, H. U. Kloer, and P. Alaupovic, “Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III,” Journal of Clinical Investigation, vol. 75, no. 2, pp. 384–390, 1985. View at Scopus
  130. K. V. K. Porkka, S. Taimela, K. Kontula et al., “Variability gene effects of DNA polymorphisms at the apo B, apo AI/CIII and apo E loci on serum lipids: the Cardiovascular Risk in Young Finns Study,” Clinical Genetics, vol. 45, no. 3, pp. 113–121, 1994. View at Scopus
  131. J. Dallongeville, A. Meirhaeghe, D. Cottel, J.-C. Fruchart, P. Amouyel, and N. Helbecque, “Gender related association between genetic variations of APOC-III gene and lipid and lipoprotein variables in northern France,” Atherosclerosis, vol. 150, no. 1, pp. 149–157, 2000. View at Scopus
  132. C. P. Oliva, L. Pisciotta, G. Li Volti et al., “Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 2, pp. 411–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Abifadel, M. Varret, J.-P. Rabès et al., “Mutations in PCSK9 cause autosomal dominant hypercholesterolemia,” Nature Genetics, vol. 34, no. 2, pp. 154–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Benjannet, D. Rhainds, R. Essalmani et al., “NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 48865–48875, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. K. N. Maxwell, E. A. Fisher, and J. L. Breslow, “Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 2069–2074, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. F. T. Yen, R. J. Deckelbaum, C. J. Mann, Y. L. Marcel, R. W. Milne, and A. R. Tall, “Inhibition of cholesteryl ester transfer protein activity by monoclonal antibody. Effects of cholesteryl ester formation and neutral lipid mass transfer in human plasma,” Journal of Clinical Investigation, vol. 83, no. 6, pp. 2018–2024, 1989. View at Scopus
  137. A. Tall, “Plasma lipid transfer proteins,” Annual Review of Biochemistry, vol. 64, pp. 235–257, 1995. View at Scopus
  138. P. J. Barter, “Hugh Sinclair Lecture: the regulation and remodelling of HDL by plasma factors,” Atherosclerosis Supplements, vol. 3, no. 4, pp. 39–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  139. R. McPherson, C. J. Mann, A. R. Tall et al., “Plasma concentrations of cholesteryl ester transfer protein in hyperlipoproteinemia: relation to cholesteryl ester transfer protein activity and other lipoprotein variables,” Arteriosclerosis and Thrombosis, vol. 11, no. 4, pp. 797–804, 1991. View at Scopus
  140. A. R. Tall, “Plasma cholesteryl ester transfer protein,” Journal of Lipid Research, vol. 34, no. 8, pp. 1255–1274, 1993. View at Scopus
  141. L. B. Angelon, E. M. Quinet, T. G. Gillete, D. T. Drayna, M. L. Brown, and A. R. Tall, “Organization of the human cholesteryl ester transfer protein gene,” Biochemistry, vol. 29, no. 6, pp. 1372–1376, 1990.
  142. D. F. Callen, C. E. Hildebrand, and S. Reeders, “Report of the second international workshop on human chromosome 16 mapping,” Cytogenetics and Cell Genetics, vol. 60, pp. 158–167, 1992.
  143. J. M. Ordovas, L. A. Cupples, D. Corella et al., “Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham Study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, pp. 1323–1329, 2000.
  144. A. Inazu, X.-C. Jiang, T. Haraki et al., “Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol,” Journal of Clinical Investigation, vol. 94, no. 5, pp. 1872–1882, 1994. View at Scopus
  145. J. A. Kuivenhoven, J. W. Jukema, A. H. Zwinderman et al., “The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis,” The New England Journal of Medicine, vol. 338, no. 2, pp. 86–93, 1998. View at Publisher · View at Google Scholar · View at Scopus
  146. D. Drayna and R. Lawn, “Multiple RFLPs at the human cholesteryl ester transfer protein (CETP) locus,” Nucleic Acids Research, vol. 15, no. 11, article 4698, 1987. View at Publisher · View at Google Scholar · View at Scopus
  147. I. Kondo, K. Berg, D. Drayna, and R. Lawn, “DNA polymorphism at the locus for human cholesteryl ester transfer protein (CETP) is associated with high density lipoprotein cholesterol and apolipoprotein levels,” Clinical Genetics, vol. 35, no. 1, pp. 49–56, 1989. View at Scopus
  148. M. L. Hannuksela, M. Johanna Liinamaa, Y. Antero Kesaniemi, and M. J. Savolainen, “Relation of polymorphisms in the cholesteryl ester transfer protein gene to transfer protein activity and plasma lipoprotein levels in alcohol drinkers,” Atherosclerosis, vol. 110, no. 1, pp. 35–44, 1994. View at Publisher · View at Google Scholar · View at Scopus
  149. R. H. Eckel, “Lipoprotein lipase: a multifunctional enzyme relevant to common metabolic diseases,” The New England Journal of Medicine, vol. 320, no. 16, pp. 1060–1068, 1989. View at Scopus
  150. M. Mulder, P. Lombardi, H. Jansen, T. J. C. Van Berkel, R. R. Frants, and L. M. Havekes, “Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipoprotein lipase,” Journal of Biological Chemistry, vol. 268, no. 13, pp. 9369–9375, 1993. View at Scopus
  151. S. S. Deeb and R. Peng, “Structure of the human lipoprotein lipase gene,” Biochemistry, vol. 28, no. 10, pp. 4131–4135, 1989. View at Scopus
  152. K. Oka, G. T. Tkalcevic, T. Nakano, H. Tucker, K. Ishimura-Oka, and W. V. Brown, “Structure and polymorphic map of human lipoprotein lipase gene,” Biochimica et Biophysica Acta, vol. 1049, no. 1, pp. 21–26, 1990. View at Publisher · View at Google Scholar · View at Scopus
  153. J. E. Hokanson, “Functional variants in the lipoprotein lipase gene and risk of cardiovascular disease,” Current Opinion in Lipidology, vol. 10, no. 5, pp. 393–399, 1999. View at Publisher · View at Google Scholar · View at Scopus
  154. H. H. Wittrup, A. Tybjærg-Hansen, and B. G. Nordestgaard, “Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease: a meta-analysis,” Circulation, vol. 99, no. 22, pp. 2901–2907, 1999. View at Scopus
  155. H. Razzaghi, C. E. Aston, R. F. Hamman, and M. I. Kamboh, “Genetic screening of the lipoprotein lipase gene for mutations associated with high triglyceride/low HDL-cholesterol levels,” Human Genetics, vol. 107, no. 3, pp. 257–267, 2000. View at Scopus
  156. J. L. Anderson, G. J. King, T. L. Bair et al., “Association of lipoprotein lipase gene polymorphisms with coronary artery disease,” Journal of the American College of Cardiology, vol. 33, no. 4, pp. 1013–1020, 1999. View at Publisher · View at Google Scholar · View at Scopus
  157. H. Tran, S. Robinson, I. Mikhailenko, and D. K. Strickland, “Modulation of the LDL receptor and LRP levels by HIV protease inhibitors,” Journal of Lipid Research, vol. 44, no. 10, pp. 1859–1869, 2003. View at Publisher · View at Google Scholar · View at Scopus
  158. D. P. Wade, B. L. Knight, and A. K. Soutar, “Regulation of low-density-lipoprotein-receptor mRNA by insulin in human hepatoma Hep G2 cells,” European Journal of Biochemistry, vol. 181, no. 3, pp. 727–731, 1989. View at Scopus
  159. R. M. Pascale, M. M. Simile, M. R. De Miglio et al., “Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase activity and gene expression by dehydroepiandrosterone in preneoplastic liver nodules,” Carcinogenesis, vol. 16, no. 7, pp. 1537–1542, 1995. View at Scopus
  160. M. Rudling, H. Olivecrona, G. Eggertsen, and B. Angelin, “Regulation of rat hepatic low density lipoprotein receptors: in vivo stimulation by growth hormone is not mediated by insulin-like growth factor,” Journal of Clinical Investigation, vol. 97, no. 2, pp. 292–299, 1996. View at Scopus
  161. J. Fauvel, E. Bonnet, J.-B. Ruidavets et al., “An interaction between apo C-III variants and protease inhibitors contributes to high triglyceride/low HDL levels in treated HIV patients,” AIDS, vol. 15, no. 18, pp. 2397–2406, 2001. View at Publisher · View at Google Scholar · View at Scopus
  162. E. Bonnet, J. Bernard, J. Fauvel, P. Massip, J.-B. Ruidavets, and B. Perret, “Association of APOC3 polymorphisms with both dyslipidemia and lipoatrophy in HAART-receiving patients,” AIDS Research and Human Retroviruses, vol. 24, no. 2, pp. 169–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. A. S. Foulkes, D. A. Wohl, I. Frank et al., “Associations among race/ethnicity, apoC-III genotypes, and lipids in HIV-1-infected individuals on antiretroviral therapy,” PLoS Medicine, vol. 3, no. 3, pp. 337–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  164. G. Aragonès, C. Alonso-Villaverde, P. Pardo-Reche et al., “Antiretroviral treatment-induced dyslipidemia in HIV-infected patients is influenced by the APOC3-related rs10892151 polymorphism,” BMC Medical Genetics, vol. 12, article 120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. S.-Y. Chang, W.-S. Ko, J.-T. Kao et al., “Association of single-nucleotide polymorphism 3 and c.553G>T of APOA5 with hypertriglyceridemia after treatment with highly active antiretroviral therapy containing protease inhibitors in HIV-infected individuals in Taiwan,” Clinical Infectious Diseases, vol. 48, no. 6, pp. 832–835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. P. E. Tarr, P. Taffé, G. Bleiber et al., “Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders,” Journal of Infectious Diseases, vol. 191, no. 9, pp. 1419–1426, 2005. View at Publisher · View at Google Scholar · View at Scopus