About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 843657, 11 pages
http://dx.doi.org/10.1155/2013/843657
Research Article

Alleviation of Hyperglycemia Induced Vascular Endothelial Injury by Exenatide Might Be Related to the Reduction of Nitrooxidative Stress

1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Fengtai District, Beijing 100069, China
2Nursing Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Street, Shijingshan District, Beijing 100144, China
3Department of Neurology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Street, Xicheng District, Beijing 100050, China
4Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomenxiang, Dongcheng District, Beijing 100730, China
5Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomenxiang, Dongcheng District, Beijing 100730, China

Received 7 July 2013; Accepted 14 October 2013

Academic Editor: Georgeta Mihai

Copyright © 2013 Qian Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Caballero, “Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease,” Obesity Research, vol. 11, no. 11, pp. 1278–1289, 2003. View at Scopus
  2. C. E. Tabit, W. B. Chung, N. M. Hamburg, and J. A. Vita, “Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications,” Reviews in Endocrine and Metabolic Disorders, vol. 11, no. 1, pp. 61–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Du, M. A. Smith, C. M. Miller, and T. S. Kern, “Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine,” Journal of Neurochemistry, vol. 80, no. 5, pp. 771–779, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Xu, G. Xun, Z. Yao et al., “Effects of generated trans-arachidonic acids on retinal capillary during nitrative stress in diabetic rats,” Ophthalmologica, vol. 222, no. 1, pp. 37–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Gong, F.-Q. Liu, J. Wang et al., “Hyperglycemia induces apoptosis of pancreatic islet endothelial cells via reactive nitrogen species-mediated Jun N-terminal kinase activation,” Biochimica et Biophysica Acta, vol. 1813, no. 6, pp. 1211–1219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M.-H. Zou, C. Shi, and R. A. Cohen, “High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H2 receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells,” Diabetes, vol. 51, no. 1, pp. 198–203, 2002. View at Scopus
  7. M. E. Doyle and J. M. Egan, “Mechanisms of action of glucagon-like peptide 1 in the pancreas,” Pharmacology and Therapeutics, vol. 113, no. 3, pp. 546–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Vilsbøll and J. J. Holst, “Incretins, insulin secretion and Type 2 diabetes mellitus,” Diabetologia, vol. 47, no. 3, pp. 357–366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. L. Baggio and D. J. Drucker, “Biology of Incretins: GLP-1 and GIP,” Gastroenterology, vol. 132, no. 6, pp. 2131–2157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. J. Drucker and M. A. Nauck, “The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes,” Lancet, vol. 368, no. 9548, pp. 1696–1705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. Bose, M. M. Mocanu, R. D. Carr, C. L. Brand, and D. M. Yellon, “Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury,” Diabetes, vol. 54, no. 1, pp. 146–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Nikolaidis, D. Elahi, T. Hentosz et al., “Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy,” Circulation, vol. 110, no. 8, pp. 955–961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. A. Nikolaidis, S. Mankad, G. G. Sokos et al., “Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion,” Circulation, vol. 109, no. 8, pp. 962–965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Nyström, M. K. Gutniak, Q. Zhang et al., “Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease,” American Journal of Physiology—Endocrinology and Metabolism, vol. 287, no. 6, pp. E1209–E1215, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Yu, C. Moreno, K. M. Hoagland et al., “Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats,” Journal of Hypertension, vol. 21, no. 6, pp. 1125–1135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Lorber, “GLP-1 receptor agonists: effects on cardiovascular risk reduction,” Cardiovascular Therapeutics, 2012. View at Publisher · View at Google Scholar
  17. A. Basu, N. Charkoudian, W. Schrage, R. A. Rizza, R. Basu, and M. J. Joyner, “Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride,” American Journal of Physiology—Endocrinology and Metabolism, vol. 293, no. 5, pp. E1289–E1295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ban, M. H. Noyan-Ashraf, J. Hoefer, S.-S. Bolz, D. J. Drucker, and M. Husain, “Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways,” Circulation, vol. 117, no. 18, pp. 2340–2350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. C. Dozier, E. L. Cureton, R. O. Kwan, B. Curran, J. Sadjadi, and G. P. Victorino, “Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation,” Peptides, vol. 30, no. 9, pp. 1735–1741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Gentilella, C. Bianchi, A. Rossi, and C. M. Rotella, “Exenatide: a review from pharmacology to clinical practice,” Diabetes, Obesity and Metabolism, vol. 11, no. 6, pp. 544–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Lovshin and D. J. Drucker, “Incretin-based therapies for type 2 diabetes mellitus,” Nature Reviews Endocrinology, vol. 5, no. 5, pp. 262–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Liu, A. E. Dear, L. B. Knudsen, and R. W. Simpson, “A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules,” Journal of Endocrinology, vol. 201, no. 1, pp. 59–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Mima, J. Hiraoka-Yamomoto, Q. Li et al., “Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes,” Diabetes, vol. 61, no. 11, pp. 2967–2979, 2012. View at Publisher · View at Google Scholar
  24. J. Ai, L.-H. Wang, R. Zhang et al., “Protective effect of the daming capsule on impaired baroreflexes in STZ-induced diabetic rats with hyperlipoidemia,” BMC Complementary and Alternative Medicine, vol. 10, article 80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Wang, G.-J. Zhu, and S.-Y. Zu, “Effects on 17β-estradiol and phytoestrogen α-zearalanol on tissue factor in plasma of ovariectomized rats and HUVECs,” Chinese Journal of Physiology, vol. 47, no. 2, pp. 67–72, 2004. View at Scopus
  26. K. Wang, J. Zhang, J. Liu et al., “Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death: Omi/HtrA2 and aged heart injury,” Age, vol. 35, no. 3, pp. 733–746, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Tao, E. Gao, X. Jiao et al., “Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress,” Circulation, vol. 115, no. 11, pp. 1408–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Q. Fan, X.-C. Yang, Y. Liu et al., “Postconditioning attenuates myocardial injury by reducing nitro-oxidative stress in vivo in rats and in humans,” Clinical Science, vol. 120, no. 6, pp. 251–261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. P. P. Zhen, Q. Zhao, D. D. Hou, et al., “Genistein attenuates vascular endothelial impairment in ovariectomized hyperhomocysteinemic rats,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 730462, 10 pages, 2012. View at Publisher · View at Google Scholar
  30. S. Lillioja, D. M. Mott, M. Spraul et al., “Insulin resistance and insulin secretory dysfunction as precursors of non- insulin-dependent diabetes mellitus: prospective studies of Pima Indians,” The New England Journal of Medicine, vol. 329, no. 27, pp. 1988–1992, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Alemany, “Utilization of dietary glucose in the metabolic syndrome,” Nutrition and Metabolism, vol. 8, no. 1, pp. 74–83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. R. S. Costa, N. R. Villela, M. D. G. C. Souza et al., “High fat diet induces central obesity, insulin resistance and microvascular dysfunction in hamsters,” Microvascular Research, vol. 82, no. 3, pp. 416–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. N. Murthy, R. C. Hilaire, D. B. Casey et al., “The synthetic GLP-I receptor agonist, exenatide, reduces intimal hyperplasia in insulin resistant rats,” Diabetes and Vascular Disease Research, vol. 7, no. 2, pp. 138–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Kodera, K. Shikata, H. U. Kataoka et al., “Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes,” Diabetologia, vol. 54, no. 4, pp. 965–978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. D'Amico, C. Di Filippo, R. Marfella et al., “Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer's prone mice,” Experimental Gerontology, vol. 45, no. 3, pp. 202–207, 2010. View at Publisher · View at Google Scholar · View at Scopus