About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 851428, 10 pages
http://dx.doi.org/10.1155/2013/851428
Review Article

Extremophilic SHMTs: From Structure to Biotechnology

Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

Received 14 April 2013; Accepted 30 May 2013

Academic Editor: Alessandro Paiardini

Copyright © 2013 Sebastiana Angelaccio. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Jaenicke, “Protein stability and molecular adaptation to extreme conditions,” European Journal of Biochemistry, vol. 202, no. 3, pp. 715–728, 1991. View at Scopus
  2. P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero, “Living with water stress: evolution of osmolyte systems,” Science, vol. 217, no. 4566, pp. 1214–1222, 1982. View at Scopus
  3. J. L. C. M. Van de Vossenberg, A. J. M. Driessen, and W. N. Konings, “The essence of being extremophilic: the role of the unique archaeal membrane lipids,” Extremophiles, vol. 2, no. 3, pp. 163–170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Kauzmann, “Some factors in the interpretation of protein denaturation,” Advances in Protein Chemistry, vol. 14, no. C, pp. 1–63, 1959. View at Publisher · View at Google Scholar · View at Scopus
  5. K. A. Dill, “Dominant forces in protein folding,” Biochemistry, vol. 29, no. 31, pp. 7133–7155, 1990. View at Scopus
  6. L. Itzhaki and P. Wolynes, “Erratum to 'Nature and nurture in protein folding and binding' [Curr Opin Struct Biol 2010, 20:1-2],” Current Opinion in Structural Biology, vol. 20, no. 3, p. 397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. D. Rose and R. Wolfenden, “Hydrogen bonding, hydrophobicity, packing, and protein folding,” Annual Review of Biophysics and Biomolecular Structure, vol. 22, pp. 381–415, 1993. View at Scopus
  8. C. N. Pace, B. A. Shirley, M. Mcnutt, and K. Gajiwala, “Forces contributing to the conformational stability of proteins,” FASEB Journal, vol. 10, no. 1, pp. 75–83, 1996. View at Scopus
  9. B. Honig, “Protein folding: from the levinthal paradox to structure prediction,” Journal of Molecular Biology, vol. 293, no. 2, pp. 283–293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Vieille and G. J. Zeikus, “Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability,” Microbiology and Molecular Biology Reviews, vol. 65, no. 1, pp. 1–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Gianese, F. Bossa, and S. Pascarella, “Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes,” Proteins, vol. 47, no. 2, pp. 236–249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. N. J. Russell, “Toward a molecular understanding of cold activity of enzymes from psychrophiles,” Extremophiles, vol. 4, no. 2, pp. 83–90, 2000. View at Scopus
  13. A. O. Smalås, H.-K. S. Leiros, V. Os, and N. P. Willassen, “Cold adapted enzymes,” Biotechnology Annual Review, vol. 6, pp. 1–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Siglioccolo, A. Paiardini, M. Piscitelli, and S. Pascarella, “Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface,” BMC Structural Biology, vol. 11, no. article 50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Sellek and J. B. Chaudhuri, “Biocatalysis in organic media using enzymes from extremophiles,” Enzyme and Microbial Technology, vol. 25, no. 6, pp. 471–482, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. R. G. Matthews and J. T. Drummond, “Providing one-carbon units for biological methylations: mechanistic studies on serine hydroxymethyltransferase, methylenetetrahydrofolate reductase, and methyltetrahydrofolate-homocysteine methyltransferase,” Chemical Reviews, vol. 90, no. 7, pp. 1275–1290, 1990. View at Scopus
  17. M. Sinnott, Comprehensive Biological Catalysis: A Mechanistic Reference, Academic Press, San Diego, Calif, USA, 1998.
  18. R. J. Ulevitch and R. G. Kallen, “Purification and characterization of pyridoxal 5′-phosphate dependent serine hydroxymethylase from lamb liver and its action upon β-phenylserines,” Biochemistry, vol. 16, no. 24, pp. 5342–5350, 1977. View at Scopus
  19. R. J. Ulevitch and R. G. Kallen, “Studies of the reactions of substituted D,L-erythro-β-phenylserines with lamb liver serine hydroxymethylase. Effects of substituents upon the dealdolization step,” Biochemistry, vol. 16, no. 24, pp. 5355–5363, 1977. View at Scopus
  20. S. B. Renwick, K. Snell, and U. Baumann, “The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy,” Structure, vol. 6, no. 9, pp. 1105–1116, 1998. View at Scopus
  21. V. Trivedi, A. Gupta, V. R. Jala et al., “Crystal structure of binary and ternary complexes of serine hydroxymethyltransferase from Bacillus stearothermophilus. Insights into the catalytic mechanism,” Journal of Biological Chemistry, vol. 277, no. 19, pp. 17161–17169, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. D. M. E. Szebenyi, X. Liu, I. A. Kriksunov, P. J. Stover, and D. J. Thiel, “Structure of a murine cytoplasmic serine hydroxymethyltransferase quinonoid ternary complex: evidence for asymmetric obligate dimers,” Biochemistry, vol. 39, no. 44, pp. 13313–13323, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. J. N. Scarsdale, S. Radaev, G. Kazanina, V. Schirch, and H. T. Wright, “Crystal structure at 2.4 Å resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate,” Journal of Molecular Biology, vol. 296, no. 1, pp. 155–168, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J. N. Scarsdale, G. Kazanina, S. Radaev, V. Schirch, and H. T. Wright, “Crystal structure of rabbit cytosolic serine hydroxymethyltransferase at 2.8 Å resolution: mechanistic implications,” Biochemistry, vol. 38, no. 26, pp. 8347–8358, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Contestabile, A. Paiardini, S. Pascarella, M. L. Di Salvo, S. D'Aguanno, and F. Bossa, “L-Threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase: a subgroup of strictly related enzymes specialized for different functions,” European Journal of Biochemistry, vol. 268, no. 24, pp. 6508–6525, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. L. di Salvo, R. Florio, A. Paiardini, M. Vivoli, S. D'Aguanno, and R. Contestabile, “Alanine racemase from Tolypocladium inflatum: a key PLP-dependent enzyme in cyclosporin biosynthesis and a model of catalytic promiscuity,” Archives of Biochemistry and Biophysics, vol. 529, pp. 55–65, 2013.
  27. V. Schirch, “Mechanism of folate-requiring enzymes in one-carbon metabolism,” in Comprehensive Biological Catalysis, M. L. Sinnot, Ed., pp. 211–252, Academic Press, New York, NY, USA, 2nd edition, 1998.
  28. V. Schirch and D. M. E. Szebenyi, “Serine hydroxymethyltransferase revisited,” Current Opinion in Chemical Biology, vol. 9, no. 5, pp. 482–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. M. E. Szebenyi, F. N. Musayev, M. L. Di Salvo, M. K. Safo, and V. Schirch, “Serine hydroxymethyltransferase: role of Glu75 and evidence that serine is cleaved by a retroaldol mechanism,” Biochemistry, vol. 43, no. 22, pp. 6865–6876, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Giardina, R. Montioli, S. Gianni et al., “Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 51, pp. 20514–20519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Schirch, K. Shostak, M. Zamora, and M. Gautam-Basak, “The origin of reaction specificity in serine hydroxymethyltransferase,” Journal of Biological Chemistry, vol. 266, no. 2, pp. 759–764, 1991. View at Scopus
  32. K. Cai and V. Schirch, “Structural studies on folding intermediates of serine hydroxymethyltransferase using fluorescence resonance energy transfer,” Journal of Biological Chemistry, vol. 271, no. 44, pp. 27311–27320, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Cai and V. Schirch, “Structural studies on folding intermediates of serine hydroxymethyltransferase using single tryptophan mutants,” Journal of Biological Chemistry, vol. 271, no. 6, pp. 2987–2994, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Cai, D. Schirch, and V. Schirch, “The affinity of pyridoxal 5′-phosphate for folding intermediates of Escherichia coli serine hydroxymethyltransferase,” Journal of Biological Chemistry, vol. 270, no. 33, pp. 19294–19299, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. T.-F. Fu, E. S. Boja, M. K. Safo, and V. Schirch, “Role of proline residues in the folding of serine hydroxymethyltransferase,” Journal of Biological Chemistry, vol. 278, no. 33, pp. 31088–31094, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Singh, F. Spyrakis, P. Cozzini, A. Paiardini, S. Pascarella, and A. Mozzarelli, “Chemogenomics of pyridoxal 5′-phosphate dependent enzymes,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 28, pp. 183–194, 2013.
  37. A. Amadasi, M. Bertoldi, R. Contestabile et al., “Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents,” Current Medicinal Chemistry, vol. 14, no. 12, pp. 1291–1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Daidone, R. Florio, S. Rinaldo et al., “In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed,” European Journal of Medicinal Chemistry, vol. 46, no. 5, pp. 1616–1621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. L. di Salvo, R. Contestabile, A. Paiardini, and B. Maras, “Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection,” Medical Hypotheses, vol. 80, pp. 633–636, 2013.
  40. H. Maden, “Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism,” Biochemical Journal, vol. 350, no. 3, pp. 609–629, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Paiardini, G. Gianese, F. Bossa, and S. Pascarella, “Structural plasticity of thermophilic serine hydroxymethyltransferases,” Proteins, vol. 50, no. 1, pp. 122–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Wasserfallen, J. Nölling, P. Pfister, J. Reeve, and E. C. De Macario, “Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 50, no. 1, pp. 43–53, 2000. View at Scopus
  43. S. D. Fratte, R. H. White, B. Maras, F. Bossa, and V. Schirch, “Purification and properties of serine hydroxymethyltransferase from Sulfolobus solfataricus,” Journal of Bacteriology, vol. 179, no. 23, pp. 7456–7461, 1997. View at Scopus
  44. R. H. White, “Distribution of folates and modified folates in extremely thermophilic bacteria,” Journal of Bacteriology, vol. 173, no. 6, pp. 1987–1991, 1991. View at Scopus
  45. S. Angelaccio, R. Chiaraluce, V. Consalvi et al., “Catalytic and thermodynamic properties of tetrahydromethanopterin-dependent serine hydroxymethyltransferase from Methanococcus jannaschii,” Journal of Biological Chemistry, vol. 278, no. 43, pp. 41789–41797, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Ide, K. Hamaguchi, S. Kobata et al., “Purification of serine hydroxymethyltransferase from Bacillus stearothermophilus with ion-exchange high-performance liquid chromatography,” Journal of Chromatography, vol. 596, no. 2, pp. 203–209, 1992. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Bhavani, V. Trivedi, V. R. Jala et al., “Role of lys-226 in the catalytic mechanism of Bacillus stearothermophilus serine hydroxymethyltransferase—crystal structure and kinetic studies,” Biochemistry, vol. 44, no. 18, pp. 6929–6937, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Rajaram, B. S. Bhavani, P. Kaul et al., “Structure determination and biochemical studies on Bacillus stearothermophilus E53Q serine hydroxymethyltransferase and its complexes provide insights on function and enzyme memory,” FEBS Journal, vol. 274, no. 16, pp. 4148–4160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. V. R. Pai, V. Rajaram, S. Bisht et al., “Structural and functional studies of Bacillus stearothermophilus serine hydroxymethyltransferase: the role of Asn341, Tyr60 nd Phe351 in tetrahydrofolate binding,” Biochemical Journal, vol. 418, no. 3, pp. 635–642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. N. Bhatt, K. Prakash, H. S. Subramanya, and V. Bhakuni, “Different unfolding pathways for mesophilic and thermophilic homologues of serine hydroxymethyltransferase,” Biochemistry, vol. 41, no. 40, pp. 12115–12123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. A. N. Bhatt, V. Bhakuni, A. Kumar, M. Y. Khan, and M. I. Siddiqi, “Alkaline pH-dependent differential unfolding characteristics of mesophilic and thermophilic homologs of dimeric serine hydroxymethyltransferase,” Biochimica et Biophysica Acta, vol. 1804, no. 6, pp. 1294–1300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Herold and K. Kirschner, “Reversible dissociation and unfolding of Aspartate aminotransferase from Escherichia coli: characterization of a monomeric intermediate,” Biochemistry, pp. 1907–1913, 1990. View at Scopus
  53. V. Schirch, S. Hopkins, E. Villar, and S. Angelaccio, “Serine hydroxymethyltransferase from Escherichia coli: purification and properties,” Journal of Bacteriology, vol. 163, no. 1, pp. 1–7, 1985. View at Scopus
  54. S. Angelaccio, R. Florio, V. Consalvi, G. Festa, and S. Pascarella, “Serine hydroxymethyltransferase from the cold adapted microorganism Psychromonas ingrahamii: a low temperature active enzyme with broad substrate specificity,” International Journal of Molecular Sciences, vol. 13, no. 2, pp. 1314–1326, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Razvi and J. M. Scholtz, “Lessons in stability from thermophilic proteins,” Protein Science, vol. 15, no. 7, pp. 1569–1578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Maugini, D. Tronelli, F. Bossa, and S. Pascarella, “Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes,” Computational Biology and Chemistry, vol. 33, no. 2, pp. 137–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Gerday, M. Aittaleb, M. Bentahir et al., “Cold-adapted enzymes: from fundamentals to biotechnology,” Trends in Biotechnology, vol. 18, no. 3, pp. 103–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. N. J. Russell, “Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications,” Advances in Biochemical Engineering/Biotechnology, vol. 61, pp. 1–21, 1998. View at Scopus
  59. A. Siglioccolo, F. Bossa, and S. Pascarella, “Structural adaptation of serine hydroxymethyltransferase to low temperatures,” International Journal of Biological Macromolecules, vol. 46, no. 1, pp. 37–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. G.-H. Zhao, H. Li, W. Liu et al., “Preparation of optically active β-hydroxy-α-amino acid by immobilized Escherichia coli cells with serine hydroxymethyl transferase activity,” Amino Acids, vol. 40, no. 1, pp. 215–220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Vivoli, F. Angelucci, A. Ilari et al., “Role of a conserved active site cation-π interaction in Escherichia coli serine hydroxymethyltransferase,” Biochemistry, vol. 48, no. 50, pp. 12034–12046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Malerba, A. Bellelli, A. Giorgi, F. Bossa, and R. Contestabile, “The mechanism of addition of pyridoxal 5′-phosphate to Escherichia coli apo-serine hydroxymethyltransferase,” Biochemical Journal, vol. 404, no. 3, pp. 477–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Siglioccolo, R. Gerace, and S. Pascarella, “Cold spots in protein cold adaptation: insights from normalized atomic displacement parameters (B′-factors),” Biophysical Chemistry, vol. 153, no. 1, pp. 104–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Hoyoux, V. Blaise, T. Collins et al., “Extreme catalysts from low-temperature environments,” Journal of Bioscience and Bioengineering, vol. 98, no. 5, pp. 317–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. M. T. Reetz, “Combinatorial and evolution-based methods in the creation of enantioselective catalysts,” Angewandte Chemie, vol. 40, pp. 284–310, 2001.
  66. W. Maruyama, M. Naoi, and H. Narabayashi, “The metabolism of L-DOPA and L-threo-3,4-dihydroxyphenylserine and their effects on monoamines in the human brain: analysis of the intraventricular fluid from parkinsonian patients,” Journal of the Neurological Sciences, vol. 139, no. 1, pp. 141–148, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Apley, “Ancillary therapy of bovine respiratory disease,” The Veterinary Clinics of North America, vol. 13, no. 3, pp. 575–582, 1997. View at Scopus
  68. M. Apley, “Antimicrobial therapy of bovine respiratory disease,” The Veterinary clinics of North America. Food animal practice, vol. 13, no. 3, pp. 549–556, 1997. View at Scopus
  69. V. P. Vassilev, T. Uchiyama, T. Kajimoto, and C. H. Wong, “L-threonine aldolase in organic synthesis: preparation of novel β-hydroxy-α-amino acids,” Tetrahedron Letters, vol. 36, no. 23, pp. 4081–4084, 1995. View at Publisher · View at Google Scholar · View at Scopus
  70. V. A. Soloshonok, Y. N. Belokon, N. A. Kuzmina et al., “Asymmetric synthesis of phosphorus analogues of dicarboxylic α-amino acids,” Journal of the Chemical Society, vol. 1, no. 12, pp. 1525–1529, 1992. View at Scopus
  71. V. A. Soloshonok, V. P. Kukhar, S. V. Galushko et al., “General method for the synthesis of enantiomerically pure β-hydroxy-α-amino acids, containing fluorine atoms in the side chains. Case of stereochemical distinction between methyl and trifluoromethyl groups. X-ray crystal and molecular structure of the nickel(II) complex of (2S,3S)-2-(trifluoromethyl)threonine,” Journal of the Chemical Society, vol. 1, no. 24, pp. 3143–3155, 1993. View at Scopus
  72. T. R. Burke Jr., M. Knight, B. Chandrasekhar, and J. A. Ferretti, “Solid-phase synthesis of viscosin, a cyclic depsipeptide with antibacterial and antiviral properties,” Tetrahedron Letters, vol. 30, no. 5, pp. 519–522, 1989. View at Scopus
  73. S. S. Miyazaki, S. Toki, Y. Izumi, and H. Yamada, “Further characterization of serine hydroxymethyltransferase from a serine producing methylotroph, Hyphomicrobium-methylovorum,” Agricultural and Biological Chemistry, vol. 51, pp. 2587–2589, 1987.
  74. L. Vidal, J. Calveras, P. Clapés, P. Ferrer, and G. Caminal, “Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst,” Applied Microbiology and Biotechnology, vol. 68, no. 4, pp. 489–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. M. L. Gutierrez, X. Garrabou, E. Agosta et al., “Serine hydroxymethyl transferase from Streptococcus thermophilus and L-threonine aldolase from Escherichia coli as stereocomplementary biocatalysts for the synthesis of beta-hydroxy-alpha,omega-diamino acid derivatives,” Chemistry, vol. 14, no. 15, pp. 4647–4656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Makart, M. Bechtold, and S. Panke, “Towards preparative asymmetric synthesis of β-hydroxy-α-amino acids: l-allo-Threonine formation from glycine and acetaldehyde using recombinant GlyA,” Journal of Biotechnology, vol. 130, no. 4, pp. 402–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Velonia, I. Tsigos, V. Bouriotis, and I. Smonou, “Stereospecificity of hydrogen transfer by the NAD+-linked alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123,” Bioorganic and Medicinal Chemistry Letters, vol. 9, no. 1, pp. 65–68, 1999. View at Publisher · View at Google Scholar · View at Scopus