About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 856265, 9 pages
http://dx.doi.org/10.1155/2013/856265
Review Article

Genome Diversification Mechanism of Rodent and Lagomorpha Chemokine Genes

1School of Health Sciences, Kumamoto University, Kuhonji, Kumamoto 860-0976, Japan
2Department of Molecular Enzymology, Kumamoto University, Graduate School of Medical Sciences, Honjo, Kumamoto 860-8556, Japan
3Department of Microbiology, Kinki University, Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
4Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, Kuhonji, Kumamoto 860-0976, Japan

Received 23 April 2013; Accepted 11 July 2013

Academic Editor: Sanford I. Bernstein

Copyright © 2013 Kanako Shibata et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Chemokines are a large family of small cytokines that are involved in host defence and body homeostasis through recruitment of cells expressing their receptors. Their genes are known to undergo rapid evolution. Therefore, the number and content of chemokine genes can be quite diverse among the different species, making the orthologous relationships often ambiguous even between closely related species. Given that rodents and rabbit are useful experimental models in medicine and drug development, we have deduced the chemokine genes from the genome sequences of several rodent species and rabbit and compared them with those of human and mouse to determine the orthologous relationships. The interspecies differences should be taken into consideration when experimental results from animal models are extrapolated into humans. The chemokine gene lists and their orthologous relationships presented here will be useful for studies using these animal models. Our analysis also enables us to reconstruct possible gene duplication processes that generated the different sets of chemokine genes in these species.